Abstract:Federated Learning (FL) is a collaborative learning framework designed to protect client data, yet it remains highly vulnerable to Intellectual Property (IP) threats. Model extraction (ME) attacks pose a significant risk to Machine Learning as a Service (MLaaS) platforms, enabling attackers to replicate confidential models by querying black-box (without internal insight) APIs. Despite FL's privacy-preserving goals, its distributed nature makes it particularly susceptible to such attacks. This paper examines the vulnerability of FL-based victim models to two types of model extraction attacks. For various federated clients built under the NVFlare platform, we implemented ME attacks across two deep learning architectures and three image datasets. We evaluate the proposed ME attack performance using various metrics, including accuracy, fidelity, and KL divergence. The experiments show that for different FL clients, the accuracy and fidelity of the extracted model are closely related to the size of the attack query set. Additionally, we explore a transfer learning based approach where pretrained models serve as the starting point for the extraction process. The results indicate that the accuracy and fidelity of the fine-tuned pretrained extraction models are notably higher, particularly with smaller query sets, highlighting potential advantages for attackers.
Abstract:Semantic communication (SemCom) aims to enhance the resource efficiency of next-generation networks by transmitting the underlying meaning of messages, focusing on information relevant to the end user. Existing literature on SemCom primarily emphasizes learning the encoder and decoder through end-to-end deep learning frameworks, with the objective of minimizing a task-specific semantic loss function. Beyond its influence on the physical and application layer design, semantic variability across users in multi-user systems enables the design of resource allocation schemes that incorporate user-specific semantic requirements. To this end, \emph{a semantic-aware resource allocation} scheme is proposed with the objective of maximizing transmission and semantic reliability, ultimately increasing the number of users whose semantic requirements are met. The resulting resource allocation problem is a non-convex mixed-integer nonlinear program (MINLP), which is known to be NP-hard. To make the problem tractable, it is decomposed into a set of sub-problems, each of which is efficiently solved via geometric programming techniques. Finally, simulations demonstrate that the proposed method improves user satisfaction by up to $17.1\%$ compared to state of the art methods based on quality of experience-aware SemCom methods.
Abstract:Mild Traumatic Brain Injury (TBI) detection presents significant challenges due to the subtle and often ambiguous presentation of symptoms in medical imaging, making accurate diagnosis a complex task. To address these challenges, we propose Proof-of-TBI, a medical diagnosis support system that integrates multiple fine-tuned vision-language models with the OpenAI-o3 reasoning large language model (LLM). Our approach fine-tunes multiple vision-language models using a labeled dataset of TBI MRI scans, training them to diagnose TBI symptoms effectively. The predictions from these models are aggregated through a consensus-based decision-making process. The system evaluates the predictions from all fine-tuned vision language models using the OpenAI-o3 reasoning LLM, a model that has demonstrated remarkable reasoning performance, to produce the most accurate final diagnosis. The LLM Agents orchestrates interactions between the vision-language models and the reasoning LLM, managing the final decision-making process with transparency, reliability, and automation. This end-to-end decision-making workflow combines the vision-language model consortium with the OpenAI-o3 reasoning LLM, enabled by custom prompt engineering by the LLM agents. The prototype for the proposed platform was developed in collaboration with the U.S. Army Medical Research team in Newport News, Virginia, incorporating five fine-tuned vision-language models. The results demonstrate the transformative potential of combining fine-tuned vision-language model inputs with the OpenAI-o3 reasoning LLM to create a robust, secure, and highly accurate diagnostic system for mild TBI prediction. To the best of our knowledge, this research represents the first application of fine-tuned vision-language models integrated with a reasoning LLM for TBI prediction tasks.
Abstract:Internet of Things (IoT) platforms with trigger-action capability allow event conditions to trigger actions in IoT devices autonomously by creating a chain of interactions. Adversaries exploit this chain of interactions to maliciously inject fake event conditions into IoT hubs, triggering unauthorized actions on target IoT devices to implement remote injection attacks. Existing defense mechanisms focus mainly on the verification of event transactions using physical event fingerprints to enforce the security policies to block unsafe event transactions. These approaches are designed to provide offline defense against injection attacks. The state-of-the-art online defense mechanisms offer real-time defense, but extensive reliability on the inference of attack impacts on the IoT network limits the generalization capability of these approaches. In this paper, we propose a platform-independent multi-agent online defense system, namely RESTRAIN, to counter remote injection attacks at runtime. RESTRAIN allows the defense agent to profile attack actions at runtime and leverages reinforcement learning to optimize a defense policy that complies with the security requirements of the IoT network. The experimental results show that the defense agent effectively takes real-time defense actions against complex and dynamic remote injection attacks and maximizes the security gain with minimal computational overhead.
Abstract:In the evolving landscape of machine learning (ML), Federated Learning (FL) presents a paradigm shift towards decentralized model training while preserving user data privacy. This paper introduces the concept of ``privacy drift", an innovative framework that parallels the well-known phenomenon of concept drift. While concept drift addresses the variability in model accuracy over time due to changes in the data, privacy drift encapsulates the variation in the leakage of private information as models undergo incremental training. By defining and examining privacy drift, this study aims to unveil the nuanced relationship between the evolution of model performance and the integrity of data privacy. Through rigorous experimentation, we investigate the dynamics of privacy drift in FL systems, focusing on how model updates and data distribution shifts influence the susceptibility of models to privacy attacks, such as membership inference attacks (MIA). Our results highlight a complex interplay between model accuracy and privacy safeguards, revealing that enhancements in model performance can lead to increased privacy risks. We provide empirical evidence from experiments on customized datasets derived from CIFAR-100 (Canadian Institute for Advanced Research, 100 classes), showcasing the impact of data and concept drift on privacy. This work lays the groundwork for future research on privacy-aware machine learning, aiming to achieve a delicate balance between model accuracy and data privacy in decentralized environments.
Abstract:Healthcare industries face challenges when experiencing rare diseases due to limited samples. Artificial Intelligence (AI) communities overcome this situation to create synthetic data which is an ethical and privacy issue in the medical domain. This research introduces the CAT-U-Net framework as a new approach to overcome these limitations, which enhances feature extraction from medical images without the need for large datasets. The proposed framework adds an extra concatenation layer with downsampling parts, thereby improving its ability to learn from limited data while maintaining patient privacy. To validate, the proposed framework's robustness, different medical conditioning datasets were utilized including COVID-19, brain tumors, and wrist fractures. The framework achieved nearly 98% reconstruction accuracy, with a Dice coefficient close to 0.946. The proposed CAT-U-Net has the potential to make a big difference in medical image diagnostics in settings with limited data.
Abstract:Over the last few years, federated learning (FL) has emerged as a prominent method in machine learning, emphasizing privacy preservation by allowing multiple clients to collaboratively build a model while keeping their training data private. Despite this focus on privacy, FL models are susceptible to various attacks, including membership inference attacks (MIAs), posing a serious threat to data confidentiality. In a recent study, Rezaei \textit{et al.} revealed the existence of an accuracy-privacy trade-off in deep ensembles and proposed a few fusion strategies to overcome it. In this paper, we aim to explore the relationship between deep ensembles and FL. Specifically, we investigate whether confidence-based metrics derived from deep ensembles apply to FL and whether there is a trade-off between accuracy and privacy in FL with respect to MIA. Empirical investigations illustrate a lack of a non-monotonic correlation between the number of clients and the accuracy-privacy trade-off. By experimenting with different numbers of federated clients, datasets, and confidence-metric-based fusion strategies, we identify and analytically justify the clear existence of the accuracy-privacy trade-off.
Abstract:Understanding the potential of generative AI (GenAI)-based attacks on the power grid is a fundamental challenge that must be addressed in order to protect the power grid by realizing and validating risk in new attack vectors. In this paper, a novel zero trust framework for a power grid supply chain (PGSC) is proposed. This framework facilitates early detection of potential GenAI-driven attack vectors (e.g., replay and protocol-type attacks), assessment of tail risk-based stability measures, and mitigation of such threats. First, a new zero trust system model of PGSC is designed and formulated as a zero-trust problem that seeks to guarantee for a stable PGSC by realizing and defending against GenAI-driven cyber attacks. Second, in which a domain-specific generative adversarial networks (GAN)-based attack generation mechanism is developed to create a new vulnerability cyberspace for further understanding that threat. Third, tail-based risk realization metrics are developed and implemented for quantifying the extreme risk of a potential attack while leveraging a trust measurement approach for continuous validation. Fourth, an ensemble learning-based bootstrap aggregation scheme is devised to detect the attacks that are generating synthetic identities with convincing user and distributed energy resources device profiles. Experimental results show the efficacy of the proposed zero trust framework that achieves an accuracy of 95.7% on attack vector generation, a risk measure of 9.61% for a 95% stable PGSC, and a 99% confidence in defense against GenAI-driven attack.
Abstract:The membership inference attack (MIA) is a popular paradigm for compromising the privacy of a machine learning (ML) model. MIA exploits the natural inclination of ML models to overfit upon the training data. MIAs are trained to distinguish between training and testing prediction confidence to infer membership information. Federated Learning (FL) is a privacy-preserving ML paradigm that enables multiple clients to train a unified model without disclosing their private data. In this paper, we propose an enhanced Membership Inference Attack with the Batch-wise generated Attack Dataset (MIA-BAD), a modification to the MIA approach. We investigate that the MIA is more accurate when the attack dataset is generated batch-wise. This quantitatively decreases the attack dataset while qualitatively improving it. We show how training an ML model through FL, has some distinct advantages and investigate how the threat introduced with the proposed MIA-BAD approach can be mitigated with FL approaches. Finally, we demonstrate the qualitative effects of the proposed MIA-BAD methodology by conducting extensive experiments with various target datasets, variable numbers of federated clients, and training batch sizes.
Abstract:Jamming and intrusion detection are critical in 5G research, aiming to maintain reliability, prevent user experience degradation, and avoid infrastructure failure. This paper introduces an anonymous jamming detection model for 5G based on signal parameters from the protocol stacks. The system uses supervised and unsupervised learning for real-time, high-accuracy detection of jamming, including unknown types. Supervised models reach an AUC of 0.964 to 1, compared to LSTM models with an AUC of 0.923 to 1. However, the need for data annotation limits the supervised approach. To address this, an unsupervised auto-encoder-based anomaly detection is presented with an AUC of 0.987. The approach is resistant to adversarial training samples. For transparency and domain knowledge injection, a Bayesian network-based causation analysis is introduced.