Abstract:Mild Traumatic Brain Injury (TBI) detection presents significant challenges due to the subtle and often ambiguous presentation of symptoms in medical imaging, making accurate diagnosis a complex task. To address these challenges, we propose Proof-of-TBI, a medical diagnosis support system that integrates multiple fine-tuned vision-language models with the OpenAI-o3 reasoning large language model (LLM). Our approach fine-tunes multiple vision-language models using a labeled dataset of TBI MRI scans, training them to diagnose TBI symptoms effectively. The predictions from these models are aggregated through a consensus-based decision-making process. The system evaluates the predictions from all fine-tuned vision language models using the OpenAI-o3 reasoning LLM, a model that has demonstrated remarkable reasoning performance, to produce the most accurate final diagnosis. The LLM Agents orchestrates interactions between the vision-language models and the reasoning LLM, managing the final decision-making process with transparency, reliability, and automation. This end-to-end decision-making workflow combines the vision-language model consortium with the OpenAI-o3 reasoning LLM, enabled by custom prompt engineering by the LLM agents. The prototype for the proposed platform was developed in collaboration with the U.S. Army Medical Research team in Newport News, Virginia, incorporating five fine-tuned vision-language models. The results demonstrate the transformative potential of combining fine-tuned vision-language model inputs with the OpenAI-o3 reasoning LLM to create a robust, secure, and highly accurate diagnostic system for mild TBI prediction. To the best of our knowledge, this research represents the first application of fine-tuned vision-language models integrated with a reasoning LLM for TBI prediction tasks.
Abstract:Large Language Models (LLMs) play a pivotal role in generating vast arrays of narratives, facilitating a systematic exploration of their effectiveness for communicating life events in narrative form. In this study, we employ a zero-shot structured narrative prompt to generate 24,000 narratives using OpenAI's GPT-4. From this dataset, we manually classify 2,880 narratives and evaluate their validity in conveying birth, death, hiring, and firing events. Remarkably, 87.43% of the narratives sufficiently convey the intention of the structured prompt. To automate the identification of valid and invalid narratives, we train and validate nine Machine Learning models on the classified datasets. Leveraging these models, we extend our analysis to predict the classifications of the remaining 21,120 narratives. All the ML models excelled at classifying valid narratives as valid, but experienced challenges at simultaneously classifying invalid narratives as invalid. Our findings not only advance the study of LLM capabilities, limitations, and validity but also offer practical insights for narrative generation and natural language processing applications.
Abstract:Epistemology is the branch of philosophy that deals with gaining knowledge. It is closely related to ontology. The branch that deals with questions like "What is real?" and "What do we know?" as it provides these components. When using modeling and simulation, we usually imply that we are doing so to either apply knowledge, in particular when we are using them for training and teaching, or that we want to gain new knowledge, for example when doing analysis or conducting virtual experiments. This paper looks at the history of science to give a context to better cope with the question, how we can gain knowledge from simulation. It addresses aspects of computability and the general underlying mathematics, and applies the findings to validation and verification and development of federations. As simulations are understood as computable executable hypotheses, validation can be understood as hypothesis testing and theory building. The mathematical framework allows furthermore addressing some challenges when developing federations and the potential introduction of contradictions when composing different theories, as they are represented by the federated simulation systems.