ETH Zurich
Abstract:Bolukbasi et al. (2016) presents one of the first gender bias mitigation techniques for word embeddings. Their method takes pre-trained word embeddings as input and attempts to isolate a linear subspace that captures most of the gender bias in the embeddings. As judged by an analogical evaluation task, their method virtually eliminates gender bias in the embeddings. However, an implicit and untested assumption of their method is that the bias sub-space is actually linear. In this work, we generalize their method to a kernelized, non-linear version. We take inspiration from kernel principal component analysis and derive a non-linear bias isolation technique. We discuss and overcome some of the practical drawbacks of our method for non-linear gender bias mitigation in word embeddings and analyze empirically whether the bias subspace is actually linear. Our analysis shows that gender bias is in fact well captured by a linear subspace, justifying the assumption of Bolukbasi et al. (2016).
Abstract:The connection between dependency trees and spanning trees is exploited by the NLP community to train and to decode graph-based dependency parsers. However, the NLP literature has missed an important difference between the two structures: only one edge may emanate from the root in a dependency tree. We analyzed the output of state-of-the-art parsers on many languages from the Universal Dependency Treebank: although these parsers are often able to learn that trees which violate the constraint should be assigned lower probabilities, their ability to do so unsurprisingly de-grades as the size of the training set decreases. In fact, the worst constraint-violation rate we observe is 24%. Prior work has proposed an inefficient algorithm to enforce the constraint, which adds a factor of n to the decoding runtime. We adapt an algorithm due to Gabow and Tarjan (1984) to dependency parsing, which satisfies the constraint without compromising the original runtime.
Abstract:Most modern NLP systems make use of pre-trained contextual representations that attain astonishingly high performance on a variety of tasks. Such high performance should not be possible unless some form of linguistic structure inheres in these representations, and a wealth of research has sprung up on probing for it. In this paper, we draw a distinction between intrinsic probing, which examines how linguistic information is structured within a representation, and the extrinsic probing popular in prior work, which only argues for the presence of such information by showing that it can be successfully extracted. To enable intrinsic probing, we propose a novel framework based on a decomposable multivariate Gaussian probe that allows us to determine whether the linguistic information in word embeddings is dispersed or focal. We then probe fastText and BERT for various morphosyntactic attributes across 36 languages. We find that most attributes are reliably encoded by only a few neurons, with fastText concentrating its linguistic structure more than BERT.
Abstract:Quite surprisingly, exact maximum a posteriori (MAP) decoding of neural language generators frequently leads to low-quality results. Rather, most state-of-the-art results on language generation tasks are attained using beam search despite its overwhelmingly high search error rate. This implies that the MAP objective alone does not express the properties we desire in text, which merits the question: if beam search is the answer, what was the question? We frame beam search as the exact solution to a different decoding objective in order to gain insights into why high probability under a model alone may not indicate adequacy. We find that beam search enforces uniform information density in text, a property motivated by cognitive science. We suggest a set of decoding objectives that explicitly enforce this property and find that exact decoding with these objectives alleviates the problems encountered when decoding poorly calibrated language generation models. Additionally, we analyze the text produced using various decoding strategies and see that, in our neural machine translation experiments, the extent to which this property is adhered to strongly correlates with BLEU.
Abstract:The question of how to probe contextual word representations in a way that is principled and useful has seen significant recent attention. In our contribution to this discussion, we argue, first, for a probe metric that reflects the trade-off between probe complexity and performance: the Pareto hypervolume. To measure complexity, we present a number of parametric and non-parametric metrics. Our experiments with such metrics show that probe's performance curves often fail to align with widely accepted rankings between language representations (with, e.g., non-contextual representations outperforming contextual ones). These results lead us to argue, second, that common simplistic probe tasks such as POS labeling and dependency arc labeling, are inadequate to evaluate the properties encoded in contextual word representations. We propose full dependency parsing as an example probe task, and demonstrate it with the Pareto hypervolume. In support of our arguments, the results of this illustrative experiment conform closer to accepted rankings among contextual word representations.
Abstract:Lexical ambiguity is widespread in language, allowing for the reuse of economical word forms and therefore making language more efficient. If ambiguous words cannot be disambiguated from context, however, this gain in efficiency might make language less clear---resulting in frequent miscommunication. For a language to be clear and efficiently encoded, we posit that the lexical ambiguity of a word type should correlate with how much information context provides about it, on average. To investigate whether this is the case, we operationalise the lexical ambiguity of a word as the entropy of meanings it can take, and provide two ways to estimate this---one which requires human annotation (using WordNet), and one which does not (using BERT), making it readily applicable to a large number of languages. We validate these measures by showing that, on six high-resource languages, there are significant Pearson correlations between our BERT-based estimate of ambiguity and the number of synonyms a word has in WordNet (e.g. $\rho = 0.40$ in English). We then test our main hypothesis---that a word's lexical ambiguity should negatively correlate with its contextual uncertainty---and find significant correlations on all 18 typologically diverse languages we analyse. This suggests that, in the presence of ambiguity, speakers compensate by making contexts more informative.
Abstract:We give a general framework for inference in spanning tree models. We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models. Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms. These algorithms are easy to implement, given the prevalence of automatic differentiation software. We motivate the development of our framework with several cautionary tales of previous research, which has developed numerous less-than-optimal algorithms for computing expectations and their gradients. We demonstrate how our framework efficiently computes several quantities with known algorithms, including the expected attachment score, entropy, and generalized expectation criteria. As a bonus, we give algorithms for quantities that are missing in the literature, including the KL divergence. In all cases, our approach matches the efficiency of existing algorithms and, in several cases, reduces the runtime complexity by a factor (or two) of the sentence length. We validate the implementation of our framework through runtime experiments. We find our algorithms are up to 12 and 26 times faster than previous algorithms for computing the Shannon entropy and the gradient of the generalized expectation objective, respectively.
Abstract:A broad goal in natural language processing (NLP) is to develop a system that has the capacity to process any natural language. Most systems, however, are developed using data from just one language such as English. The SIGMORPHON 2020 shared task on morphological reinflection aims to investigate systems' ability to generalize across typologically distinct languages, many of which are low resource. Systems were developed using data from 45 languages and just 5 language families, fine-tuned with data from an additional 45 languages and 10 language families (13 in total), and evaluated on all 90 languages. A total of 22 systems (19 neural) from 10 teams were submitted to the task. All four winning systems were neural (two monolingual transformers and two massively multilingual RNN-based models with gated attention). Most teams demonstrate utility of data hallucination and augmentation, ensembles, and multilingual training for low-resource languages. Non-neural learners and manually designed grammars showed competitive and even superior performance on some languages (such as Ingrian, Tajik, Tagalog, Zarma, Lingala), especially with very limited data. Some language families (Afro-Asiatic, Niger-Congo, Turkic) were relatively easy for most systems and achieved over 90% mean accuracy while others were more challenging.
Abstract:Decoding for many NLP tasks requires a heuristic algorithm for approximating exact search since the full search space is often intractable if not simply too large to traverse efficiently. The default algorithm for this job is beam search--a pruned version of breadth-first search--which in practice, returns better results than exact inference due to beneficial search bias. In this work, we show that standard beam search is a computationally inefficient choice for many decoding tasks; specifically, when the scoring function is a monotonic function in sequence length, other search algorithms can be used to reduce the number of calls to the scoring function (e.g., a neural network), which is often the bottleneck computation. We propose best-first beam search, an algorithm that provably returns the same set of results as standard beam search, albeit in the minimum number of scoring function calls to guarantee optimality (modulo beam size). We show that best-first beam search can be used with length normalization and mutual information decoding, among other rescoring functions. Lastly, we propose a memory-reduced variant of best-first beam search, which has a similar search bias in terms of downstream performance, but runs in a fraction of the time.
Abstract:The noun lexica of many natural languages are divided into several declension classes with characteristic morphological properties. Class membership is far from deterministic, but the phonological form of a noun and/or its meaning can often provide imperfect clues. Here, we investigate the strength of those clues. More specifically, we operationalize this by measuring how much information, in bits, we can glean about declension class from knowing the form and/or meaning of nouns. We know that form and meaning are often also indicative of grammatical gender---which, as we quantitatively verify, can itself share information with declension class---so we also control for gender. We find for two Indo-European languages (Czech and German) that form and meaning respectively share significant amounts of information with class (and contribute additional information above and beyond gender). The three-way interaction between class, form, and meaning (given gender) is also significant. Our study is important for two reasons: First, we introduce a new method that provides additional quantitative support for a classic linguistic finding that form and meaning are relevant for the classification of nouns into declensions. Secondly, we show not only that individual declensions classes vary in the strength of their clues within a language, but also that these variations themselves vary across languages.