Abstract:We present a deep imitation learning framework for robotic bimanual manipulation in a continuous state-action space. Imitation learning has been effectively utilized in mimicking bimanual manipulation movements, but generalizing the movement to objects in different locations has not been explored. We hypothesize that to precisely generalize the learned behavior relative to an object's location requires modeling relational information in the environment. To achieve this, we designed a method that (i) uses a multi-model framework to decomposes complex dynamics into elemental movement primitives, and (ii) parameterizes each primitive using a recurrent graph neural network to capture interactions. Our model is a deep, hierarchical, modular architecture with a high-level planner that learns to compose primitives sequentially and a low-level controller which integrates primitive dynamics modules and inverse kinematics control. We demonstrate the effectiveness using several simulated bimanual robotic manipulation tasks. Compared to models based on previous imitation learning studies, our model generalizes better and achieves higher success rates in the simulated tasks.
Abstract:Inferring interactions from multi-agent trajectories has broad applications in physics, vision and robotics. Neural relational inference (NRI) is a deep generative model that can reason about relations in complex dynamics without supervision. In this paper, we take a careful look at this approach for relational inference in multi-agent trajectories. First, we discover that NRI can be fundamentally limited without sufficient long-term observations. Its ability to accurately infer interactions degrades drastically for short output sequences. Next, we consider a more general setting of relational inference when interactions are changing overtime. We propose an extension ofNRI, which we call the DYnamic multi-AgentRelational Inference (DYARI) model that can reason about dynamic relations. We conduct exhaustive experiments to study the effect of model architecture, under-lying dynamics and training scheme on the performance of dynamic relational inference using a simulated physics system. We also showcase the usage of our model on real-world multi-agent basketball trajectories.
Abstract:Locating the source of an epidemic, or patient zero (P0), can provide critical insights into the infection's transmission course and allow efficient resource allocation. Existing methods use graph-theoretic centrality measures and expensive message-passing algorithms, requiring knowledge of the underlying dynamics and its parameters. In this paper, we revisit this problem using graph neural networks (GNNs) to learn P0. We establish a theoretical limit for the identification of P0 in a class of epidemic models. We evaluate our method against different epidemic models on both synthetic and a real-world contact network considering a disease with history and characteristics of COVID-19. % We observe that GNNs can identify P0 close to the theoretical bound on accuracy, without explicit input of dynamics or its parameters. In addition, GNN is over 100 times faster than classic methods for inference on arbitrary graph topologies. Our theoretical bound also shows that the epidemic is like a ticking clock, emphasizing the importance of early contact-tracing. We find a maximum time after which accurate recovery of the source becomes impossible, regardless of the algorithm used.
Abstract:Missing data poses significant challenges while learning representations of video sequences. We present Disentangled Imputed Video autoEncoder (DIVE), a deep generative model that imputes and predicts future video frames in the presence of missing data. Specifically, DIVE introduces a missingness latent variable, disentangles the hidden video representations into static and dynamic appearance, pose, and missingness factors for each object, while it imputes each object trajectory where data is missing. On a moving MNIST dataset with various missing scenarios, DIVE outperforms the state of the art baselines by a substantial margin. We also present comparisons for real-world MOTSChallenge pedestrian dataset, which demonstrates the practical value of our method in a more realistic setting.
Abstract:Mean aortic pressure is a major determinant of perfusion in all organ systems. The ability to forecast the mean aortic pressure would enhance the ability of physicians to estimate prognosis of the patient and assist in early detection of hemodynamic instability. However, forecasting aortic pressure is challenging because the blood pressure time series is noisy and can be highly non-stationary. In this study, we provided a benchmark study of different deep sequence learning models on pump performance data obtained in patients who underwent high-risk percutaneous intervention with transvalvular micro-axial heart pump support. The aim of this study was to forecast the mean aortic pressure five minutes in advance, using the time series data of previous five minutes as input. We performed comprehensive study on time series with increasing, decreasing, and stationary trends. The experiments show promising results with the Legendre Memory Unit architecture achieving the best performance with an overall RMSE of 1.837 mmHg.
Abstract:Training machine learning models that can learn complex spatiotemporal dynamics and generalize under distributional shift is a fundamental challenge. The symmetries in a physical system play a unique role in characterizing unchanged features under transformation. We propose a systematic approach to improve generalization in spatiotemporal models by incorporating symmetries into deep neural networks. Our general framework to design equivariant convolutional models employs (1) convolution with equivariant kernels, (2) conjugation by averaging operators in order to force equivariance, (3) and a naturally equivariant generalization of convolution called group correlation. Our framework is both theoretically and experimentally robust to distributional shift by a symmetry group and enjoys favorable sample complexity. We demonstrate the advantage of our approach on a variety of physical dynamics including turbulence and diffusion systems. This is the first time that equivariant CNNs have been used to forecast physical dynamics.
Abstract:Efficient and interpretable spatial analysis is crucial in many fields such as geology, sports, and climate science. Large-scale spatial data often contains complex higher-order correlations across features and locations. While tensor latent factor models can describe higher-order correlations, they are inherently computationally expensive to train. Furthermore, for spatial analysis, these models should not only be predictive but also be spatially coherent. However, latent factor models are sensitive to initialization and can yield inexplicable results. We develop a novel Multi-resolution Tensor Learning (MRTL) algorithm for efficiently learning interpretable spatial patterns. MRTL initializes the latent factors from an approximate full-rank tensor model for improved interpretability and progressively learns from a coarse resolution to the fine resolution for an enormous computation speedup. We also prove the theoretical convergence and computational complexity of MRTL. When applied to two real-world datasets, MRTL demonstrates 4 ~ 5 times speedup compared to a fixed resolution while yielding accurate and interpretable models.
Abstract:While deep learning has shown tremendous success in a wide range of domains, it remains a grand challenge to incorporate physical principles in a systematic manner to the design, training, and inference of such models. In this paper, we aim to predict turbulent flow by learning its highly nonlinear dynamics from spatiotemporal velocity fields of large-scale fluid flow simulations of relevance to turbulence modeling and climate modeling. We adopt a hybrid approach by marrying two well-established turbulent flow simulation techniques with deep learning. Specifically, we introduce trainable spectral filters in a coupled model of Reynolds-averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES), followed by a specialized U-net for prediction. Our approach, which we call turbulent-Flow Net (TF-Net), is grounded in a principled physics model, yet offers the flexibility of learned representations. We compare our model, TF-Net, with state-of-the-art baselines and observe significant reductions in error for predictions 60 frames ahead. Most importantly, our method predicts physical fields that obey desirable physical characteristics, such as conservation of mass, whilst faithfully emulating the turbulent kinetic energy field and spectrum, which are critical for accurate prediction of turbulent flows.
Abstract:To deepen our understanding of graph neural networks, we investigate the representation power of Graph Convolutional Networks (GCN) through the looking glass of graph moments, a key property of graph topology encoding path of various lengths. We find that GCNs are rather restrictive in learning graph moments. Without careful design, GCNs can fail miserably even with multiple layers and nonlinear activation functions. We analyze theoretically the expressiveness of GCNs, arriving at a modular GCN design, using different propagation rules. Our modular design is capable of distinguishing graphs from different graph generation models for surprisingly small graphs, a notoriously difficult problem in network science. Our investigation suggests that, depth is much more influential than width, with deeper GCNs being more capable of learning higher order graph moments. Additionally, combining GCN modules with different propagation rules is critical to the representation power of GCNs.
Abstract:Precise near-ground trajectory control is difficult for multi-rotor drones, due to the complex aerodynamic effects caused by interactions between multi-rotor airflow and the environment. Conventional control methods often fail to properly account for these complex effects and fall short in accomplishing smooth landing. In this paper, we present a novel deep-learning-based robust nonlinear controller (Neural Lander) that improves control performance of a quadrotor during landing. Our approach combines a nominal dynamics model with a Deep Neural Network (DNN) that learns high-order interactions. We apply spectral normalization (SN) to constrain the Lipschitz constant of the DNN. Leveraging this Lipschitz property, we design a nonlinear feedback linearization controller using the learned model and prove system stability with disturbance rejection. To the best of our knowledge, this is the first DNN-based nonlinear feedback controller with stability guarantees that can utilize arbitrarily large neural nets. Experimental results demonstrate that the proposed controller significantly outperforms a Baseline Nonlinear Tracking Controller in both landing and cross-table trajectory tracking cases. We also empirically show that the DNN generalizes well to unseen data outside the training domain.