Abstract:In this paper, we introduce an attribute-based interactive image search which can leverage human-in-the-loop feedback to iteratively refine image search results. We study active image search where human feedback is solicited exclusively in visual form, without using relative attribute annotations used by prior work which are not typically found in many datasets. In order to optimize the image selection strategy, a deep reinforcement model is trained to learn what images are informative rather than rely on hand-crafted measures typically leveraged in prior work. Additionally, we extend the recently introduced Conditional Similarity Network to incorporate global similarity in training visual embeddings, which results in more natural transitions as the user explores the learned similarity embeddings. Our experiments demonstrate the effectiveness of our approach, producing compelling results on both active image search and image attribute representation tasks.
Abstract:This paper presents an approach for grounding phrases in images which jointly learns multiple text-conditioned embeddings in a single end-to-end model. In order to differentiate text phrases into semantically distinct subspaces, we propose a concept weight branch that automatically assigns phrases to embeddings, whereas prior works predefine such assignments. Our proposed solution simplifies the representation requirements for individual embeddings and allows the underrepresented concepts to take advantage of the shared representations before feeding them into concept-specific layers. Comprehensive experiments verify the effectiveness of our approach across three phrase grounding datasets, Flickr30K Entities, ReferIt Game, and Visual Genome, where we obtain a (resp.) 4%, 3%, and 4% improvement in grounding performance over a strong region-phrase embedding baseline.
Abstract:Fine-grained image search is still a challenging problem due to the difficulty in capturing subtle differences regardless of pose variations of objects from fine-grained categories. In practice, a dynamic inventory with new fine-grained categories adds another dimension to this challenge. In this work, we propose an end-to-end network, called FGGAN, that learns discriminative representations by implicitly learning a geometric transformation from multi-view images for fine-grained image search. We integrate a generative adversarial network (GAN) that can automatically handle complex view and pose variations by converting them to a canonical view without any predefined transformations. Moreover, in an open-set scenario, our network is able to better match images from unseen and unknown fine-grained categories. Extensive experiments on two public datasets and a newly collected dataset have demonstrated the outstanding robust performance of the proposed FGGAN in both closed-set and open-set scenarios, providing as much as 10% relative improvement compared to baselines.
Abstract:In this work, we propose an efficient and effective approach for unconstrained salient object detection in images using deep convolutional neural networks. Instead of generating thousands of candidate bounding boxes and refining them, our network directly learns to generate the saliency map containing the exact number of salient objects. During training, we convert the ground-truth rectangular boxes to Gaussian distributions that better capture the ROI regarding individual salient objects. During inference, the network predicts Gaussian distributions centered at salient objects with an appropriate covariance, from which bounding boxes are easily inferred. Notably, our network performs saliency map prediction without pixel-level annotations, salient object detection without object proposals, and salient object subitizing simultaneously, all in a single pass within a unified framework. Extensive experiments show that our approach outperforms existing methods on various datasets by a large margin, and achieves more than 100 fps with VGG16 network on a single GPU during inference.
Abstract:In this paper, we propose a novel end-to-end approach for scalable visual search infrastructure. We discuss the challenges we faced for a massive volatile inventory like at eBay and present our solution to overcome those. We harness the availability of large image collection of eBay listings and state-of-the-art deep learning techniques to perform visual search at scale. Supervised approach for optimized search limited to top predicted categories and also for compact binary signature are key to scale up without compromising accuracy and precision. Both use a common deep neural network requiring only a single forward inference. The system architecture is presented with in-depth discussions of its basic components and optimizations for a trade-off between search relevance and latency. This solution is currently deployed in a distributed cloud infrastructure and fuels visual search in eBay ShopBot and Close5. We show benchmark on ImageNet dataset on which our approach is faster and more accurate than several unsupervised baselines. We share our learnings with the hope that visual search becomes a first class citizen for all large scale search engines rather than an afterthought.
Abstract:In this work, we propose and address a new computer vision task, which we call fashion item detection, where the aim is to detect various fashion items a person in the image is wearing or carrying. The types of fashion items we consider in this work include hat, glasses, bag, pants, shoes and so on. The detection of fashion items can be an important first step of various e-commerce applications for fashion industry. Our method is based on state-of-the-art object detection method pipeline which combines object proposal methods with a Deep Convolutional Neural Network. Since the locations of fashion items are in strong correlation with the locations of body joints positions, we incorporate contextual information from body poses in order to improve the detection performance. Through the experiments, we demonstrate the effectiveness of the proposed method.
Abstract:In image classification, visual separability between different object categories is highly uneven, and some categories are more difficult to distinguish than others. Such difficult categories demand more dedicated classifiers. However, existing deep convolutional neural networks (CNN) are trained as flat N-way classifiers, and few efforts have been made to leverage the hierarchical structure of categories. In this paper, we introduce hierarchical deep CNNs (HD-CNNs) by embedding deep CNNs into a category hierarchy. An HD-CNN separates easy classes using a coarse category classifier while distinguishing difficult classes using fine category classifiers. During HD-CNN training, component-wise pretraining is followed by global finetuning with a multinomial logistic loss regularized by a coarse category consistency term. In addition, conditional executions of fine category classifiers and layer parameter compression make HD-CNNs scalable for large-scale visual recognition. We achieve state-of-the-art results on both CIFAR100 and large-scale ImageNet 1000-class benchmark datasets. In our experiments, we build up three different HD-CNNs and they lower the top-1 error of the standard CNNs by 2.65%, 3.1% and 1.1%, respectively.
Abstract:Recent advances in consumer depth sensors have created many opportunities for human body measurement and modeling. Estimation of 3D body shape is particularly useful for fashion e-commerce applications such as virtual try-on or fit personalization. In this paper, we propose a method for capturing accurate human body shape and anthropometrics from a single consumer grade depth sensor. We first generate a large dataset of synthetic 3D human body models using real-world body size distributions. Next, we estimate key body measurements from a single monocular depth image. We combine body measurement estimates with local geometry features around key joint positions to form a robust multi-dimensional feature vector. This allows us to conduct a fast nearest-neighbor search to every sample in the dataset and return the closest one. Compared to existing methods, our approach is able to predict accurate full body parameters from a partial view using measurement parameters learned from the synthetic dataset. Furthermore, our system is capable of generating 3D human mesh models in real-time, which is significantly faster than methods which attempt to model shape and pose deformations. To validate the efficiency and applicability of our system, we collected a dataset that contains frontal and back scans of 83 clothed people with ground truth height and weight. Experiments on real-world dataset show that the proposed method can achieve real-time performance with competing results achieving an average error of 1.9 cm in estimated measurements.
Abstract:Discovering visual knowledge from weakly labeled data is crucial to scale up computer vision recognition system, since it is expensive to obtain fully labeled data for a large number of concept categories. In this paper, we propose ConceptLearner, which is a scalable approach to discover visual concepts from weakly labeled image collections. Thousands of visual concept detectors are learned automatically, without human in the loop for additional annotation. We show that these learned detectors could be applied to recognize concepts at image-level and to detect concepts at image region-level accurately. Under domain-specific supervision, we further evaluate the learned concepts for scene recognition on SUN database and for object detection on Pascal VOC 2007. ConceptLearner shows promising performance compared to fully supervised and weakly supervised methods.
Abstract:Text is ubiquitous in the artificial world and easily attainable when it comes to book title and author names. Using the images from the book cover set from the Stanford Mobile Visual Search dataset and additional book covers and metadata from openlibrary.org, we construct a large scale book cover retrieval dataset, complete with 100K distractor covers and title and author strings for each. Because our query images are poorly conditioned for clean text extraction, we propose a method for extracting a matching noisy and erroneous OCR readings and matching it against clean author and book title strings in a standard document look-up problem setup. Finally, we demonstrate how to use this text-matching as a feature in conjunction with popular retrieval features such as VLAD using a simple learning setup to achieve significant improvements in retrieval accuracy over that of either VLAD or the text alone.