Abstract:Whitening loss provides theoretical guarantee in avoiding feature collapse for self-supervised learning (SSL) using joint embedding architectures. One typical implementation of whitening loss is hard whitening that designs whitening transformation over embedding and imposes the loss on the whitened output. In this paper, we propose spectral transformation (ST) framework to map the spectrum of embedding to a desired distribution during forward pass, and to modulate the spectrum of embedding by implicit gradient update during backward pass. We show that whitening transformation is a special instance of ST by definition, and there exist other instances that can avoid collapse by our empirical investigation. Furthermore, we propose a new instance of ST, called IterNorm with trace loss (INTL). We theoretically prove that INTL can avoid collapse and modulate the spectrum of embedding towards an equal-eigenvalue distribution during the course of optimization. Moreover, INTL achieves 76.6% top-1 accuracy in linear evaluation on ImageNet using ResNet-50, which exceeds the performance of the supervised baseline, and this result is obtained by using a batch size of only 256. Comprehensive experiments show that INTL is a promising SSL method in practice. The code is available at https://github.com/winci-ai/intl.
Abstract:Most previous co-salient object detection works mainly focus on extracting co-salient cues via mining the consistency relations across images while ignoring explicit exploration of background regions. In this paper, we propose a Discriminative co-saliency and background Mining Transformer framework (DMT) based on several economical multi-grained correlation modules to explicitly mine both co-saliency and background information and effectively model their discrimination. Specifically, we first propose a region-to-region correlation module for introducing inter-image relations to pixel-wise segmentation features while maintaining computational efficiency. Then, we use two types of pre-defined tokens to mine co-saliency and background information via our proposed contrast-induced pixel-to-token correlation and co-saliency token-to-token correlation modules. We also design a token-guided feature refinement module to enhance the discriminability of the segmentation features under the guidance of the learned tokens. We perform iterative mutual promotion for the segmentation feature extraction and token construction. Experimental results on three benchmark datasets demonstrate the effectiveness of our proposed method. The source code is available at: https://github.com/dragonlee258079/DMT.
Abstract:Current transformer-based change detection (CD) approaches either employ a pre-trained model trained on large-scale image classification ImageNet dataset or rely on first pre-training on another CD dataset and then fine-tuning on the target benchmark. This current strategy is driven by the fact that transformers typically require a large amount of training data to learn inductive biases, which is insufficient in standard CD datasets due to their small size. We develop an end-to-end CD approach with transformers that is trained from scratch and yet achieves state-of-the-art performance on four public benchmarks. Instead of using conventional self-attention that struggles to capture inductive biases when trained from scratch, our architecture utilizes a shuffled sparse-attention operation that focuses on selected sparse informative regions to capture the inherent characteristics of the CD data. Moreover, we introduce a change-enhanced feature fusion (CEFF) module to fuse the features from input image pairs by performing a per-channel re-weighting. Our CEFF module aids in enhancing the relevant semantic changes while suppressing the noisy ones. Extensive experiments on four CD datasets reveal the merits of the proposed contributions, achieving gains as high as 14.27\% in intersection-over-union (IoU) score, compared to the best-published results in the literature. Code is available at \url{https://github.com/mustansarfiaz/ScratchFormer}.
Abstract:In this work, we propose a few-shot colorectal tissue image generation method for addressing the scarcity of histopathological training data for rare cancer tissues. Our few-shot generation method, named XM-GAN, takes one base and a pair of reference tissue images as input and generates high-quality yet diverse images. Within our XM-GAN, a novel controllable fusion block densely aggregates local regions of reference images based on their similarity to those in the base image, resulting in locally consistent features. To the best of our knowledge, we are the first to investigate few-shot generation in colorectal tissue images. We evaluate our few-shot colorectral tissue image generation by performing extensive qualitative, quantitative and subject specialist (pathologist) based evaluations. Specifically, in specialist-based evaluation, pathologists could differentiate between our XM-GAN generated tissue images and real images only 55% time. Moreover, we utilize these generated images as data augmentation to address the few-shot tissue image classification task, achieving a gain of 4.4% in terms of mean accuracy over the vanilla few-shot classifier. Code: \url{https://github.com/VIROBO-15/XM-GAN}
Abstract:Existing video instance segmentation (VIS) approaches generally follow a closed-world assumption, where only seen category instances are identified and spatio-temporally segmented at inference. Open-world formulation relaxes the close-world static-learning assumption as follows: (a) first, it distinguishes a set of known categories as well as labels an unknown object as `unknown' and then (b) it incrementally learns the class of an unknown as and when the corresponding semantic labels become available. We propose the first open-world VIS approach, named OW-VISFormer, that introduces a novel feature enrichment mechanism and a spatio-temporal objectness (STO) module. The feature enrichment mechanism based on a light-weight auxiliary network aims at accurate pixel-level (unknown) object delineation from the background as well as distinguishing category-specific known semantic classes. The STO module strives to generate instance-level pseudo-labels by enhancing the foreground activations through a contrastive loss. Moreover, we also introduce an extensive experimental protocol to measure the characteristics of OW-VIS. Our OW-VISFormer performs favorably against a solid baseline in OW-VIS setting. Further, we evaluate our contributions in the standard fully-supervised VIS setting by integrating them into the recent SeqFormer, achieving an absolute gain of 1.6\% AP on Youtube-VIS 2019 val. set. Lastly, we show the generalizability of our contributions for the open-world detection (OWOD) setting, outperforming the best existing OWOD method in the literature. Code, models along with OW-VIS splits are available at \url{https://github.com/OmkarThawakar/OWVISFormer}.
Abstract:We present a method to efficiently generate 3D-aware high-resolution images that are view-consistent across multiple target views. The proposed multiplane neural radiance model, named GMNR, consists of a novel {\alpha}-guided view-dependent representation ({\alpha}-VdR) module for learning view-dependent information. The {\alpha}-VdR module, faciliated by an {\alpha}-guided pixel sampling technique, computes the view-dependent representation efficiently by learning viewing direction and position coefficients. Moreover, we propose a view-consistency loss to enforce photometric similarity across multiple views. The GMNR model can generate 3D-aware high-resolution images that are viewconsistent across multiple camera poses, while maintaining the computational efficiency in terms of both training and inference time. Experiments on three datasets demonstrate the effectiveness of the proposed modules, leading to favorable results in terms of both generation quality and inference time, compared to existing approaches. Our GMNR model generates 3D-aware images of 1024 X 1024 pixels with 17.6 FPS on a single V100. Code : https://github.com/VIROBO-15/GMNR
Abstract:We propose an end-to-end one-step person search approach with learnable proposals, named LEAPS. Given a set of sparse and learnable proposals, LEAPS employs a dynamic person search head to directly perform person detection and corresponding re-id feature generation without non-maximum suppression post-processing. The dynamic person search head comprises a detection head and a novel flexible re-id head. Our flexible re-id head first employs a dynamic region-of-interest (RoI) operation to extract discriminative RoI features of the proposals. Then, it generates re-id features using a plain and a hierarchical interaction re-id module. To better guide discriminative re-id feature learning, we introduce a diverse re-id sample matching strategy, instead of bipartite matching in detection head. Comprehensive experiments reveal the benefit of the proposed LEAPS, achieving a favorable performance on two public person search benchmarks: CUHK-SYSU and PRW. When using the same ResNet50 backbone, our LEAPS obtains a mAP score of 55.0%, outperforming the best reported results in literature by 1.7%, while achieving around a two-fold speedup on the challenging PRW dataset. Our source code and models will be released.
Abstract:Accurate 3D mitochondria instance segmentation in electron microscopy (EM) is a challenging problem and serves as a prerequisite to empirically analyze their distributions and morphology. Most existing approaches employ 3D convolutions to obtain representative features. However, these convolution-based approaches struggle to effectively capture long-range dependencies in the volume mitochondria data, due to their limited local receptive field. To address this, we propose a hybrid encoder-decoder framework based on a split spatio-temporal attention module that efficiently computes spatial and temporal self-attentions in parallel, which are later fused through a deformable convolution. Further, we introduce a semantic foreground-background adversarial loss during training that aids in delineating the region of mitochondria instances from the background clutter. Our extensive experiments on three benchmarks, Lucchi, MitoEM-R and MitoEM-H, reveal the benefits of the proposed contributions achieving state-of-the-art results on all three datasets. Our code and models are available at https://github.com/OmkarThawakar/STT-UNET.
Abstract:The pose-guided person image generation task requires synthesizing photorealistic images of humans in arbitrary poses. The existing approaches use generative adversarial networks that do not necessarily maintain realistic textures or need dense correspondences that struggle to handle complex deformations and severe occlusions. In this work, we show how denoising diffusion models can be applied for high-fidelity person image synthesis with strong sample diversity and enhanced mode coverage of the learnt data distribution. Our proposed Person Image Diffusion Model (PIDM) disintegrates the complex transfer problem into a series of simpler forward-backward denoising steps. This helps in learning plausible source-to-target transformation trajectories that result in faithful textures and undistorted appearance details. We introduce a 'texture diffusion module' based on cross-attention to accurately model the correspondences between appearance and pose information available in source and target images. Further, we propose 'disentangled classifier-free guidance' to ensure close resemblance between the conditional inputs and the synthesized output in terms of both pose and appearance information. Our extensive results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios. We also show how our generated images can help in downstream tasks. Our code and models will be publicly released.
Abstract:A desirable objective in self-supervised learning (SSL) is to avoid feature collapse. Whitening loss guarantees collapse avoidance by minimizing the distance between embeddings of positive pairs under the conditioning that the embeddings from different views are whitened. In this paper, we propose a framework with an informative indicator to analyze whitening loss, which provides a clue to demystify several interesting phenomena as well as a pivoting point connecting to other SSL methods. We reveal that batch whitening (BW) based methods do not impose whitening constraints on the embedding, but they only require the embedding to be full-rank. This full-rank constraint is also sufficient to avoid dimensional collapse. Based on our analysis, we propose channel whitening with random group partition (CW-RGP), which exploits the advantages of BW-based methods in preventing collapse and avoids their disadvantages requiring large batch size. Experimental results on ImageNet classification and COCO object detection reveal that the proposed CW-RGP possesses a promising potential for learning good representations. The code is available at https://github.com/winci-ai/CW-RGP.