Abstract:Few-Shot Relation Extraction (FSRE) remains a challenging task due to the scarcity of annotated data and the limited generalization capabilities of existing models. Although large language models (LLMs) have demonstrated potential in FSRE through in-context learning (ICL), their general-purpose training objectives often result in suboptimal performance for task-specific relation extraction. To overcome these challenges, we propose TKRE (Two-Stage Knowledge-Guided Pre-training for Relation Extraction), a novel framework that synergistically integrates LLMs with traditional relation extraction models, bridging generative and discriminative learning paradigms. TKRE introduces two key innovations: (1) leveraging LLMs to generate explanation-driven knowledge and schema-constrained synthetic data, addressing the issue of data scarcity; and (2) a two-stage pre-training strategy combining Masked Span Language Modeling (MSLM) and Span-Level Contrastive Learning (SCL) to enhance relational reasoning and generalization. Together, these components enable TKRE to effectively tackle FSRE tasks. Comprehensive experiments on benchmark datasets demonstrate the efficacy of TKRE, achieving new state-of-the-art performance in FSRE and underscoring its potential for broader application in low-resource scenarios. \footnote{The code and data are released on https://github.com/UESTC-GQJ/TKRE.
Abstract:Despite the recent success of two-stage prototypical networks in few-shot named entity recognition (NER), challenges such as over/under-detected false spans in the span detection stage and unaligned entity prototypes in the type classification stage persist. Additionally, LLMs have not proven to be effective few-shot information extractors in general. In this paper, we propose an approach called Boundary-Aware LLMs for Few-Shot Named Entity Recognition to address these issues. We introduce a boundary-aware contrastive learning strategy to enhance the LLM's ability to perceive entity boundaries for generalized entity spans. Additionally, we utilize LoRAHub to align information from the target domain to the source domain, thereby enhancing adaptive cross-domain classification capabilities. Extensive experiments across various benchmarks demonstrate that our framework outperforms prior methods, validating its effectiveness. In particular, the proposed strategies demonstrate effectiveness across a range of LLM architectures. The code and data are released on https://github.com/UESTC-GQJ/BANER.
Abstract:Knowledge graph question answering (KGQA) involves answering natural language questions by leveraging structured information stored in a knowledge graph. Typically, KGQA initially retrieve a targeted subgraph from a large-scale knowledge graph, which serves as the basis for reasoning models to address queries. However, the retrieved subgraph inevitably brings distraction information for knowledge utilization, impeding the model's ability to perform accurate reasoning. To address this issue, we propose a Question-guided Knowledge Graph Re-scoring method (Q-KGR) to eliminate noisy pathways for the input question, thereby focusing specifically on pertinent factual knowledge. Moreover, we introduce Knowformer, a parameter-efficient method for injecting the re-scored knowledge graph into large language models to enhance their ability to perform factual reasoning. Extensive experiments on multiple KGQA benchmarks demonstrate the superiority of our method over existing systems.
Abstract:Fake news detection aims to detect fake news widely spreading on social media platforms, which can negatively influence the public and the government. Many approaches have been developed to exploit relevant information from news images, text, or videos. However, these methods may suffer from the following limitations: (1) ignore the inherent emotional information of the news, which could be beneficial since it contains the subjective intentions of the authors; (2) pay little attention to the relation (similarity) between the title and textual information in news articles, which often use irrelevant title to attract reader' attention. To this end, we propose a novel Title-Text similarity and emotion-aware Fake news detection (TieFake) method by jointly modeling the multi-modal context information and the author sentiment in a unified framework. Specifically, we respectively employ BERT and ResNeSt to learn the representations for text and images, and utilize publisher emotion extractor to capture the author's subjective emotion in the news content. We also propose a scale-dot product attention mechanism to capture the similarity between title features and textual features. Experiments are conducted on two publicly available multi-modal datasets, and the results demonstrate that our proposed method can significantly improve the performance of fake news detection. Our code is available at https://github.com/UESTC-GQJ/TieFake.