University of Oxford
Abstract:Real world applications of stereo depth estimation require models that are robust to dynamic variations in the environment. Even though deep learning based stereo methods are successful, they often fail to generalize to unseen variations in the environment, making them less suitable for practical applications such as autonomous driving. In this work, we introduce a "learning-to-adapt" framework that enables deep stereo methods to continuously adapt to new target domains in an unsupervised manner. Specifically, our approach incorporates the adaptation procedure into the learning objective to obtain a base set of parameters that are better suited for unsupervised online adaptation. To further improve the quality of the adaptation, we learn a confidence measure that effectively masks the errors introduced during the unsupervised adaptation. We evaluate our method on synthetic and real-world stereo datasets and our experiments evidence that learning-to-adapt is, indeed beneficial for online adaptation on vastly different domains.
Abstract:Person re-identification (re-ID) has attracted much attention recently due to its great importance in video surveillance. In general, distance metrics used to identify two person images are expected to be robust under various appearance changes. However, our work observes the extreme vulnerability of existing distance metrics to adversarial examples, generated by simply adding human-imperceptible perturbations to person images. Hence, the security danger is dramatically increased when deploying commercial re-ID systems in video surveillance. Although adversarial examples have been extensively applied for classification analysis, it is rarely studied in metric analysis like person re-identification. The most likely reason is the natural gap between the training and testing of re-ID networks, that is, the predictions of a re-ID network cannot be directly used during testing without an effective metric. In this work, we bridge the gap by proposing Adversarial Metric Attack, a parallel methodology to adversarial classification attacks. Comprehensive experiments clearly reveal the adversarial effects in re-ID systems. Meanwhile, we also present an early attempt of training a metric-preserving network, thereby defending the metric against adversarial attacks. At last, by benchmarking various adversarial settings, we expect that our work can facilitate the development of adversarial attack and defense in metric-based applications.
Abstract:Learning with less supervision is a major challenge in artificial intelligence. One sensible approach to decrease the amount of supervision is to leverage prior experience and transfer knowledge from tasks seen in the past. However, a necessary condition for a successful transfer is the ability to remember how to perform previous tasks. The Continual Learning (CL) setting, whereby an agent learns from a stream of tasks without seeing any example twice, is an ideal framework to investigate how to accrue such knowledge. In this work, we consider supervised learning tasks and methods that leverage a very small episodic memory for continual learning. Through an extensive empirical analysis across four benchmark datasets adapted to CL, we observe that a very simple baseline, which jointly trains on both examples from the current task as well as examples stored in the memory, outperforms state-of-the-art CL approaches with and without episodic memory. Surprisingly, repeated learning over tiny episodic memories does not harm generalization on past tasks, as joint training on data from subsequent tasks acts like a data dependent regularizer. We discuss and evaluate different approaches to write into the memory. Most notably, reservoir sampling works remarkably well across the board, except when the memory size is extremely small. In this case, writing strategies that guarantee an equal representation of all classes work better. Overall, these methods should be considered as a strong baseline candidate when benchmarking new CL approaches
Abstract:In the last few years, deep multi-agent reinforcement learning (RL) has become a highly active area of research. A particularly challenging class of problems in this area is partially observable, cooperative, multi-agent learning, in which teams of agents must learn to coordinate their behaviour while conditioning only on their private observations. This is an attractive research area since such problems are relevant to a large number of real-world systems and are also more amenable to evaluation than general-sum problems. Standardised environments such as the ALE and MuJoCo have allowed single-agent RL to move beyond toy domains, such as grid worlds. However, there is no comparable benchmark for cooperative multi-agent RL. As a result, most papers in this field use one-off toy problems, making it difficult to measure real progress. In this paper, we propose the StarCraft Multi-Agent Challenge (SMAC) as a benchmark problem to fill this gap. SMAC is based on the popular real-time strategy game StarCraft II and focuses on micromanagement challenges where each unit is controlled by an independent agent that must act based on local observations. We offer a diverse set of challenge maps and recommendations for best practices in benchmarking and evaluations. We also open-source a deep multi-agent RL learning framework including state-of-the-art algorithms. We believe that SMAC can provide a standard benchmark environment for years to come. Videos of our best agents for several SMAC scenarios are available at: https://youtu.be/VZ7zmQ_obZ0.
Abstract:Standard adversarial training involves two agents, namely a generator and a discriminator, playing a mini-max game. However, even if the players converge to an equilibrium, the generator may only recover a part of the target data distribution, in a situation commonly referred to as mode collapse. In this work, we present the Domain Partitioning Network (DoPaNet), a new approach to deal with mode collapse in generative adversarial learning. We employ multiple discriminators, each encouraging the generator to cover a different part of the target distribution. To ensure these parts do not overlap and collapse into the same mode, we add a classifier as a third agent in the game. The classifier decides which discriminator the generator is trained against for each sample. Through experiments on toy examples and real images, we show the merits of DoPaNet in covering the real distribution and its superiority with respect to the competing methods. Besides, we also show that we can control the modes from which samples are generated using DoPaNet.
Abstract:We present in this work the first end-to-end deep learning based method that predicts both 3D hand shape and pose from RGB images in the wild. Our network consists of the concatenation of a deep convolutional encoder, and a fixed model-based decoder. Given an input image, and optionally 2D joint detections obtained from an independent CNN, the encoder predicts a set of hand and view parameters. The decoder has two components: A pre-computed articulated mesh deformation hand model that generates a 3D mesh from the hand parameters, and a re-projection module controlled by the view parameters that projects the generated hand into the image domain. We show that using the shape and pose prior knowledge encoded in the hand model within a deep learning framework yields state-of-the-art performance in 3D pose prediction from images on standard benchmarks, and produces geometrically valid and plausible 3D reconstructions. Additionally, we show that training with weak supervision in the form of 2D joint annotations on datasets of images in the wild, in conjunction with full supervision in the form of 3D joint annotations on limited available datasets allows for good generalization to 3D shape and pose predictions on images in the wild.
Abstract:Recently, graph neural networks have attracted great attention and achieved prominent performance in various research fields. Most of those algorithms have assumed pairwise relationships of objects of interest. However, in many real applications, the relationships between objects are in higher-order, beyond a pairwise formulation. To efficiently learn deep embeddings on the high-order graph-structured data, we introduce two end-to-end trainable operators to the family of graph neural networks, i.e., hypergraph convolution and hypergraph attention. Whilst hypergraph convolution defines the basic formulation of performing convolution on a hypergraph, hypergraph attention further enhances the capacity of representation learning by leveraging an attention module. With the two operators, a graph neural network is readily extended to a more flexible model and applied to diverse applications where non-pairwise relationships are observed. Extensive experimental results with semi-supervised node classification demonstrate the effectiveness of hypergraph convolution and hypergraph attention.
Abstract:Deep Reinforcement Learning (DeepRL) models surpass human-level performance in a multitude of tasks. Standing in stark contrast to the stellar performance is the obscure nature of the learned policies. The direct mapping from states to actions makes it hard to interpret the rationale behind the decision making of agents. In contrast to previous a-posteriori methods of visualising DeepRL policies, we propose an end-to-end trainable framework based on Rainbow, a representative Deep Q-Network (DQN) agent. Our method automatically detects important regions in the input domain, which enables characterization of general strategy and explanation for non-intuitive behaviors. Hence, we call it Region Sensitive Rainbow (RS-Rainbow). RS-Rainbow utilises a simple yet effective mechanism to incorporate innate visualisation ability into the learning model, not only improving the interpretability, but enabling the agent to leverage enhanced state representations for improved performance. Without extra supervision, specialised feature detectors focusing on distinct aspects of gameplay can be learned. Extensive experiments on the challenging platform of Atari 2600 demonstrates the superiority of RS-Rainbow. In particular, our agent achieves state of the art at just 25% of the training frames without massive large-scale parallel training.
Abstract:We characterise some of the quirks and shortcomings in the exploration of Visual Dialogue (VD) - a sequential question-answering task where the questions and corresponding answers are related through given visual stimuli. To do so, we develop an embarrassingly simple method based on Canonical Correlation Analysis (CCA) that, on the standard dataset, achieves near state-of-the-art performance for some standard metric. In direct contrast to current complex and over-parametrised architectures that are both compute and time intensive, our method ignores the visual stimuli, ignores the sequencing of dialogue, does not need gradients, uses off-the-shelf feature extractors, has at least an order of magnitude fewer parameters, and learns in practically no time. We argue that these results are indicative of issues in current approaches to Visual Dialogue relating particularly to implicit dataset biases, under-constrained task objectives, and over-constrained evaluation metrics, and consequently, discuss some avenues to ameliorate these issues.
Abstract:In this paper we illustrate how to perform both visual object tracking and semi-supervised video object segmentation, in real-time, with a single simple approach. Our method, dubbed SiamMask, improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting their loss with a binary segmentation task. Once trained, SiamMask solely relies on a single bounding box initialisation and operates online, producing class-agnostic object segmentation masks and rotated bounding boxes at 35 frames per second. Despite its simplicity, versatility and fast speed, our strategy allows us to establish a new state-of-the-art among real-time trackers on VOT-2018, while at the same time demonstrating competitive performance and the best speed for the semi-supervised video object segmentation task on DAVIS-2016 and DAVIS-2017. The project website is http://www.robots.ox.ac.uk/~qwang/SiamMask.