Abstract:Understanding the causal effects of text on downstream outcomes is a central task in many applications. Estimating such effects requires researchers to run controlled experiments that systematically vary textual features. While large language models (LLMs) hold promise for generating text, producing and evaluating controlled variation requires more careful attention. In this paper, we present an end-to-end pipeline for the generation and causal estimation of latent textual interventions. Our work first performs hypothesis generation and steering via sparse autoencoders (SAEs), followed by robust causal estimation. Our pipeline addresses both computational and statistical challenges in text-as-treatment experiments. We demonstrate that naive estimation of causal effects suffers from significant bias as text inherently conflates treatment and covariate information. We describe the estimation bias induced in this setting and propose a solution based on covariate residualization. Our empirical results show that our pipeline effectively induces variation in target features and mitigates estimation error, providing a robust foundation for causal effect estimation in text-as-treatment settings.
Abstract:As LLMs integrate into our daily lives, understanding their behavior becomes essential. In this work, we focus on behavioral dispositions$-$the underlying tendencies that shape responses in social contexts$-$and introduce a framework to study how closely the dispositions expressed by LLMs align with those of humans. Our approach is grounded in established psychological questionnaires but adapts them for LLMs by transforming human self-report statements into Situational Judgment Tests (SJTs). These SJTs assess behavior by eliciting natural recommendations in realistic user-assistant scenarios. We generate 2,500 SJTs, each validated by three human annotators, and collect preferred actions from 10 annotators per SJT, from a large pool of 550 participants. In a comprehensive study involving 25 LLMs, we find that models often do not reflect the distribution of human preferences: (1) in scenarios with low human consensus, LLMs consistently exhibit overconfidence in a single response; (2) when human consensus is high, smaller models deviate significantly, and even some frontier models do not reflect the consensus in 15-20% of cases; (3) traits can exhibit cross-LLM patterns, e.g., LLMs may encourage emotion expression in contexts where human consensus favors composure. Lastly, mapping psychometric statements directly to behavioral scenarios presents a unique opportunity to evaluate the predictive validity of self-reports, revealing considerable gaps between LLMs' stated values and their revealed behavior.