Abstract:In this chapter, we consider generative information retrieval evaluation from two distinct but interrelated perspectives. First, large language models (LLMs) themselves are rapidly becoming tools for evaluation, with current research indicating that LLMs may be superior to crowdsource workers and other paid assessors on basic relevance judgement tasks. We review past and ongoing related research, including speculation on the future of shared task initiatives, such as TREC, and a discussion on the continuing need for human assessments. Second, we consider the evaluation of emerging LLM-based generative information retrieval (GenIR) systems, including retrieval augmented generation (RAG) systems. We consider approaches that focus both on the end-to-end evaluation of GenIR systems and on the evaluation of a retrieval component as an element in a RAG system. Going forward, we expect the evaluation of GenIR systems to be at least partially based on LLM-based assessment, creating an apparent circularity, with a system seemingly evaluating its own output. We resolve this apparent circularity in two ways: 1) by viewing LLM-based assessment as a form of "slow search", where a slower IR system is used for evaluation and training of a faster production IR system; and 2) by recognizing a continuing need to ground evaluation in human assessment, even if the characteristics of that human assessment must change.
Abstract:In today's world, sleep quality is pivotal for overall well-being. While wearable sensors offer real-time monitoring, they often lack actionable insights, leading to user abandonment. This paper delves into the role of technology in understanding sleep patterns. We introduce a two-stage framework, utilizing Large Language Models (LLMs), aiming to provide accurate sleep predictions with actionable feedback. Leveraging the GLOBEM dataset and synthetic data from LLMs, we highlight enhanced results with models like XGBoost. Our approach merges advanced machine learning with user-centric design, blending scientific accuracy with practicality.