Abstract:While static word embedding models are known to represent linguistic analogies as parallel lines in high-dimensional space, the underlying mechanism as to why they result in such geometric structures remains obscure. We find that an elementary contrastive-style method employed over distributional information performs competitively with popular word embedding models on analogy recovery tasks, while achieving dramatic speedups in training time. Further, we demonstrate that a contrastive loss is sufficient to create these parallel structures in word embeddings, and establish a precise relationship between the co-occurrence statistics and the geometric structure of the resulting word embeddings.
Abstract:Modern neural network architectures have shown remarkable success in several large-scale classification and prediction tasks. Part of the success of these architectures is their flexibility to transform the data from the raw input representations (e.g. pixels for vision tasks, or text for natural language processing tasks) to one-hot output encoding. While much of the work has focused on studying how the input gets transformed to the one-hot encoding, very little work has examined the effectiveness of these one-hot labels. In this work, we demonstrate that more sophisticated label representations are better for classification than the usual one-hot encoding. We propose Learning with Adaptive Labels (LwAL) algorithm, which simultaneously learns the label representation while training for the classification task. These learned labels can significantly cut down on the training time (usually by more than 50%) while often achieving better test accuracies. Our algorithm introduces negligible additional parameters and has a minimal computational overhead. Along with improved training times, our learned labels are semantically meaningful and can reveal hierarchical relationships that may be present in the data.
Abstract:We demonstrate that a neural network pre-trained on text and fine-tuned on code solves Mathematics problems by program synthesis. We turn questions into programming tasks, automatically generate programs, and then execute them, perfectly solving university-level problems from MIT's large Mathematics courses (Single Variable Calculus 18.01, Multivariable Calculus 18.02, Differential Equations 18.03, Introduction to Probability and Statistics 18.05, Linear Algebra 18.06, and Mathematics for Computer Science 6.042), Columbia University's COMS3251 Computational Linear Algebra course, as well as questions from a MATH dataset (on Prealgebra, Algebra, Counting and Probability, Number Theory, and Precalculus), the latest benchmark of advanced mathematics problems specifically designed to assess mathematical reasoning. We explore prompt generation methods that enable Transformers to generate question solving programs for these subjects, including solutions with plots. We generate correct answers for a random sample of questions in each topic. We quantify the gap between the original and transformed questions and perform a survey to evaluate the quality and difficulty of generated questions. This is the first work to automatically solve, grade, and generate university-level Mathematics course questions at scale. This represents a milestone for higher education.
Abstract:Meaning Representation (AMR) is a graph-based semantic representation for sentences, composed of collections of concepts linked by semantic relations. AMR-based approaches have found success in a variety of applications, but a challenge to using it in tasks that require document-level context is that it only represents individual sentences. Prior work in AMR-based summarization has automatically merged the individual sentence graphs into a document graph, but the method of merging and its effects on summary content selection have not been independently evaluated. In this paper, we present a novel dataset consisting of human-annotated alignments between the nodes of paired documents and summaries which may be used to evaluate (1) merge strategies; and (2) the performance of content selection methods over nodes of a merged or unmerged AMR graph. We apply these two forms of evaluation to prior work as well as a new method for node merging and show that our new method has significantly better performance than prior work.
Abstract:We solve university level probability and statistics questions by program synthesis using OpenAI's Codex, a Transformer trained on text and fine-tuned on code. We transform course problems from MIT's 18.05 Introduction to Probability and Statistics and Harvard's STAT110 Probability into programming tasks. We then execute the generated code to get a solution. Since these course questions are grounded in probability, we often aim to have Codex generate probabilistic programs that simulate a large number of probabilistic dependencies to compute its solution. Our approach requires prompt engineering to transform the question from its original form to an explicit, tractable form that results in a correct program and solution. To estimate the amount of work needed to translate an original question into its tractable form, we measure the similarity between original and transformed questions. Our work is the first to introduce a new dataset of university-level probability and statistics problems and solve these problems in a scalable fashion using the program synthesis capabilities of large language models.
Abstract:We solve MIT's Linear Algebra 18.06 course and Columbia University's Computational Linear Algebra COMS3251 courses with perfect accuracy by interactive program synthesis. This surprisingly strong result is achieved by turning the course questions into programming tasks and then running the programs to produce the correct answers. We use OpenAI Codex with zero-shot learning, without providing any examples in the prompts, to synthesize code from questions. We quantify the difference between the original question text and the transformed question text that yields a correct answer. Since all COMS3251 questions are not available online the model is not overfitting. We go beyond just generating code for questions with numerical answers by interactively generating code that also results visually pleasing plots as output. Finally, we automatically generate new questions given a few sample questions which may be used as new course content. This work is a significant step forward in solving quantitative math problems and opens the door for solving many university level STEM courses by machine.
Abstract:Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.
Abstract:Meta-learning has emerged as an important framework for learning new tasks from just a few examples. The success of any meta-learning model depends on (i) its fast adaptation to new tasks, as well as (ii) having a shared representation across similar tasks. Here we extend the model-agnostic meta-learning (MAML) framework introduced by Finn et al. (2017) to achieve improved performance by analyzing the temporal dynamics of the optimization procedure via the Runge-Kutta method. This method enables us to gain fine-grained control over the optimization and helps us achieve both the adaptation and representation goals across tasks. By leveraging this refined control, we demonstrate that there are multiple principled ways to update MAML and show that the classic MAML optimization is simply a special case of second-order Runge-Kutta method that mainly focuses on fast-adaptation. Experiments on benchmark classification, regression and reinforcement learning tasks show that this refined control helps attain improved results.
Abstract:Recent literature has shown that symbolic data, such as text and graphs, is often better represented by points on a curved manifold, rather than in Euclidean space. However, geometrical operations on manifolds are generally more complicated than in Euclidean space, and thus many techniques for processing and analysis taken for granted in Euclidean space are difficult on manifolds. A priori, it is not obvious how we may generalize such methods to manifolds. We consider specifically the problem of distance metric learning, and present a framework that solves it on a large class of manifolds, such that similar data are located in closer proximity with respect to the manifold distance function. In particular, we extend the existing metric learning algorithms, and derive the corresponding sample complexity rates for the case of manifolds. Additionally, we demonstrate an improvement of performance in $k$-means clustering and $k$-nearest neighbor classification on real-world complex networks using our methods.
Abstract:Fair machine learning concerns the analysis and design of learning algorithms that do not exhibit systematic bias with respect to some sensitive feature (e.g., race, gender). This subject has received sustained interest in the past few years, with considerable progress on both devising sensible measures of fairness, and means of achieving them. Typically, the latter involves correcting one's learning procedure so that there is no bias on the training sample. However, all such work has operated under the assumption that the sensitive feature available in one's training sample is perfectly reliable. This assumption may be violated in many real-world cases: for example, respondents to a survey may choose to conceal or obfuscate their group identity out of privacy concerns. This poses the question of whether one can still learn fair classifiers in the presence of such noisy sensitive features. In this paper, we answer the question in the affirmative for a widely-used measure of fairness and model of noise. We show that if one measures fairness using the mean-difference score, and sensitive features are subject to noise from the mutually contaminated learning model, then owing to a simple identity we only need to change the desired fairness-tolerance. The requisite tolerance can be estimated by leveraging existing noise-rate estimators. We finally show that our procedure is empirically effective on two case-studies involving sensitive feature censoring.