Abstract:As mobile cameras with compact optics are unable to produce a strong bokeh effect, lots of interest is now devoted to deep learning-based solutions for this task. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based bokeh effect rendering approach that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale EBB! bokeh dataset consisting of 5K shallow / wide depth-of-field image pairs captured using the Canon 7D DSLR camera. The runtime of the resulting models was evaluated on the Kirin 9000's Mali GPU that provides excellent acceleration results for the majority of common deep learning ops. A detailed description of all models developed in this challenge is provided in this paper.
Abstract:Depth maps are used in a wide range of applications from 3D rendering to 2D image effects such as Bokeh. However, those predicted by single image depth estimation (SIDE) models often fail to capture isolated holes in objects and/or have inaccurate boundary regions. Meanwhile, high-quality masks are much easier to obtain, using commercial auto-masking tools or off-the-shelf methods of segmentation and matting or even by manual editing. Hence, in this paper, we formulate a novel problem of mask-guided depth refinement that utilizes a generic mask to refine the depth prediction of SIDE models. Our framework performs layered refinement and inpainting/outpainting, decomposing the depth map into two separate layers signified by the mask and the inverse mask. As datasets with both depth and mask annotations are scarce, we propose a self-supervised learning scheme that uses arbitrary masks and RGB-D datasets. We empirically show that our method is robust to different types of masks and initial depth predictions, accurately refining depth values in inner and outer mask boundary regions. We further analyze our model with an ablation study and demonstrate results on real applications. More information can be found at https://sooyekim.github.io/MaskDepth/ .
Abstract:Recently, much attention has been drawn to learning the underlying 3D structures of a scene from monocular videos in a fully self-supervised fashion. One of the most challenging aspects of this task is handling the independently moving objects as they break the rigid-scene assumption. For the first time, we show that pixel positional information can be exploited to learn SVDE (Single View Depth Estimation) from videos. Our proposed moving object (MO) masks, which are induced by shifted positional information (SPI) and referred to as `SPIMO' masks, are very robust and consistently remove the independently moving objects in the scenes, allowing for better learning of SVDE from videos. Additionally, we introduce a new adaptive quantization scheme that assigns the best per-pixel quantization curve for our depth discretization. Finally, we employ existing boosting techniques in a new way to further self-supervise the depth of the moving objects. With these features, our pipeline is robust against moving objects and generalizes well to high-resolution images, even when trained with small patches, yielding state-of-the-art (SOTA) results with almost 8.5x fewer parameters than the previous works that learn from videos. We present extensive experiments on KITTI and CityScapes that show the effectiveness of our method.
Abstract:In this paper, we propose a novel joint deblurring and multi-frame interpolation (DeMFI) framework, called DeMFI-Net, which accurately converts blurry videos of lower-frame-rate to sharp videos at higher-frame-rate based on flow-guided attentive-correlation-based feature bolstering (FAC-FB) module and recursive boosting (RB), in terms of multi-frame interpolation (MFI). The DeMFI-Net jointly performs deblurring and MFI where its baseline version performs feature-flow-based warping with FAC-FB module to obtain a sharp-interpolated frame as well to deblur two center-input frames. Moreover, its extended version further improves the joint task performance based on pixel-flow-based warping with GRU-based RB. Our FAC-FB module effectively gathers the distributed blurry pixel information over blurry input frames in feature-domain to improve the overall joint performances, which is computationally efficient since its attentive correlation is only focused pointwise. As a result, our DeMFI-Net achieves state-of-the-art (SOTA) performances for diverse datasets with significant margins compared to the recent SOTA methods, for both deblurring and MFI. All source codes including pretrained DeMFI-Net are publicly available at https://github.com/JihyongOh/DeMFI.
Abstract:Pan-sharpening is a process of merging a high-resolution (HR) panchromatic (PAN) image and its corresponding low-resolution (LR) multi-spectral (MS) image to create an HR-MS and pan-sharpened image. However, due to the different sensors' locations, characteristics and acquisition time, PAN and MS image pairs often tend to have various amounts of misalignment. Conventional deep-learning-based methods that were trained with such misaligned PAN-MS image pairs suffer from diverse artifacts such as double-edge and blur artifacts in the resultant PAN-sharpened images. In this paper, we propose a novel framework called shift-invariant pan-sharpening with moving object alignment (SIPSA-Net) which is the first method to take into account such large misalignment of moving object regions for PAN sharpening. The SISPA-Net has a feature alignment module (FAM) that can adjust one feature to be aligned to another feature, even between the two different PAN and MS domains. For better alignment in pan-sharpened images, a shift-invariant spectral loss is newly designed, which ignores the inherent misalignment in the original MS input, thereby having the same effect as optimizing the spectral loss with a well-aligned MS image. Extensive experimental results show that our SIPSA-Net can generate pan-sharpened images with remarkable improvements in terms of visual quality and alignment, compared to the state-of-the-art methods.
Abstract:Heavy rain removal from a single image is the task of simultaneously eliminating rain streaks and fog, which can dramatically degrade the quality of captured images. Most existing rain removal methods do not generalize well for the heavy rain case. In this work, we propose a novel network architecture consisting of three sub-networks to remove heavy rain from a single image without estimating rain streaks and fog separately. The first sub-net, a U-net-based architecture that incorporates our Spatial Channel Attention (SCA) blocks, extracts global features that provide sufficient contextual information needed to remove atmospheric distortions caused by rain and fog. The second sub-net learns the additive residues information, which is useful in removing rain streak artifacts via our proposed Residual Inception Modules (RIM). The third sub-net, the multiplicative sub-net, adopts our Channel-attentive Inception Modules (CIM) and learns the essential brighter local features which are not effectively extracted in the SCA and additive sub-nets by modulating the local pixel intensities in the derained images. Our three clean image results are then combined via an attentive blending block to generate the final clean image. Our method with SCA, RIM, and CIM significantly outperforms the previous state-of-the-art single-image deraining methods on the synthetic datasets, shows considerably cleaner and sharper derained estimates on the real image datasets. We present extensive experiments and ablation studies supporting each of our method's contributions on both synthetic and real image datasets.
Abstract:In this paper, we firstly present a dataset (X4K1000FPS) of 4K videos of 1000 fps with the extreme motion to the research community for video frame interpolation (VFI), and propose an extreme VFI network, called XVFI-Net, that first handles the VFI for 4K videos with large motion. The XVFI-Net is based on a recursive multi-scale shared structure that consists of two cascaded modules for bidirectional optical flow learning between two input frames (BiOF-I) and for bidirectional optical flow learning from target to input frames (BiOF-T). The optical flows are stably approximated by a complementary flow reversal (CFR) proposed in BiOF-T module. During inference, the BiOF-I module can start at any scale of input while the BiOF-T module only operates at the original input scale so that the inference can be accelerated while maintaining highly accurate VFI performance. Extensive experimental results show that our XVFI-Net can successfully capture the essential information of objects with extremely large motions and complex textures while the state-of-the-art methods exhibit poor performance. Furthermore, our XVFI-Net framework also performs comparably on the previous lower resolution benchmark dataset, which shows a robustness of our algorithm as well. All source codes, pre-trained models, and proposed X4K1000FPS datasets are publicly available at https://github.com/JihyongOh/XVFI.
Abstract:Although Generative Adversarial Networks (GANs) are successfully applied to diverse fields, training GANs on synthetic aperture radar (SAR) data is a challenging task mostly due to speckle noise. On the one hands, in a learning perspective of human's perception, it is natural to learn a task by using various information from multiple sources. However, in the previous GAN works on SAR target image generation, the information on target classes has only been used. Due to the backscattering characteristics of SAR image signals, the shapes and structures of SAR target images are strongly dependent on their pose angles. Nevertheless, the pose angle information has not been incorporated into such generative models for SAR target images. In this paper, we firstly propose a novel GAN-based multi-task learning (MTL) method for SAR target image generation, called PeaceGAN that uses both pose angle and target class information, which makes it possible to produce SAR target images of desired target classes at intended pose angles. For this, the PeaceGAN has two additional structures, a pose estimator and an auxiliary classifier, at the side of its discriminator to combine the pose and class information more efficiently. In addition, the PeaceGAN is jointly learned in an end-to-end manner as MTL with both pose angle and target class information, thus enhancing the diversity and quality of generated SAR target images The extensive experiments show that taking an advantage of both pose angle and target class learning by the proposed pose estimator and auxiliary classifier can help the PeaceGAN's generator effectively learn the distributions of SAR target images in the MTL framework, so that it can better generate the SAR target images more flexibly and faithfully at intended pose angles for desired target classes compared to the recent state-of-the-art methods.
Abstract:In this paper, we propose a self-supervised single-view pixel-level accurate depth estimation network, called PLADE-Net. The PLADE-Net is the first work that shows unprecedented accuracy levels, exceeding 95\% in terms of the $\delta^1$ metric on the challenging KITTI dataset. Our PLADE-Net is based on a new network architecture with neural positional encoding and a novel loss function that borrows from the closed-form solution of the matting Laplacian to learn pixel-level accurate depth estimation from stereo images. Neural positional encoding allows our PLADE-Net to obtain more consistent depth estimates by letting the network reason about location-specific image properties such as lens and projection distortions. Our novel distilled matting Laplacian loss allows our network to predict sharp depths at object boundaries and more consistent depths in highly homogeneous regions. Our proposed method outperforms all previous self-supervised single-view depth estimation methods by a large margin on the challenging KITTI dataset, with unprecedented levels of accuracy. Furthermore, our PLADE-Net, naively extended for stereo inputs, outperforms the most recent self-supervised stereo methods, even without any advanced blocks like 1D correlations, 3D convolutions, or spatial pyramid pooling. We present extensive ablation studies and experiments that support our method's effectiveness on the KITTI, CityScapes, and Make3D datasets.
Abstract:Although deep learning has enabled a huge leap forward in image inpainting, current methods are often unable to synthesize realistic high-frequency details. In this paper, we propose applying super resolution to coarsely reconstructed outputs, refining them at high resolution, and then downscaling the output to the original resolution. By introducing high-resolution images to the refinement network, our framework is able to reconstruct finer details that are usually smoothed out due to spectral bias - the tendency of neural networks to reconstruct low frequencies better than high frequencies. To assist training the refinement network on large upscaled holes, we propose a progressive learning technique in which the size of the missing regions increases as training progresses. Our zoom-in, refine and zoom-out strategy, combined with high-resolution supervision and progressive learning, constitutes a framework-agnostic approach for enhancing high-frequency details that can be applied to other inpainting methods. We provide qualitative and quantitative evaluations along with an ablation analysis to show the effectiveness of our approach, which outperforms state-of-the-art inpainting methods.