Picture for Max Welling

Max Welling

UC Irvine

The Convolution Exponential and Generalized Sylvester Flows

Add code
Jun 02, 2020
Figure 1 for The Convolution Exponential and Generalized Sylvester Flows
Figure 2 for The Convolution Exponential and Generalized Sylvester Flows
Figure 3 for The Convolution Exponential and Generalized Sylvester Flows
Figure 4 for The Convolution Exponential and Generalized Sylvester Flows
Viaarxiv icon

Bayesian Bits: Unifying Quantization and Pruning

Add code
May 15, 2020
Figure 1 for Bayesian Bits: Unifying Quantization and Pruning
Figure 2 for Bayesian Bits: Unifying Quantization and Pruning
Figure 3 for Bayesian Bits: Unifying Quantization and Pruning
Figure 4 for Bayesian Bits: Unifying Quantization and Pruning
Viaarxiv icon

A Data and Compute Efficient Design for Limited-Resources Deep Learning

Add code
Apr 21, 2020
Figure 1 for A Data and Compute Efficient Design for Limited-Resources Deep Learning
Figure 2 for A Data and Compute Efficient Design for Limited-Resources Deep Learning
Figure 3 for A Data and Compute Efficient Design for Limited-Resources Deep Learning
Viaarxiv icon

Guided Variational Autoencoder for Disentanglement Learning

Add code
Apr 02, 2020
Figure 1 for Guided Variational Autoencoder for Disentanglement Learning
Figure 2 for Guided Variational Autoencoder for Disentanglement Learning
Figure 3 for Guided Variational Autoencoder for Disentanglement Learning
Figure 4 for Guided Variational Autoencoder for Disentanglement Learning
Viaarxiv icon

Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs

Add code
Mar 11, 2020
Figure 1 for Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
Figure 2 for Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
Figure 3 for Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
Figure 4 for Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
Viaarxiv icon

Neural Enhanced Belief Propagation on Factor Graphs

Add code
Mar 04, 2020
Figure 1 for Neural Enhanced Belief Propagation on Factor Graphs
Figure 2 for Neural Enhanced Belief Propagation on Factor Graphs
Figure 3 for Neural Enhanced Belief Propagation on Factor Graphs
Figure 4 for Neural Enhanced Belief Propagation on Factor Graphs
Viaarxiv icon

Plannable Approximations to MDP Homomorphisms: Equivariance under Actions

Add code
Feb 27, 2020
Figure 1 for Plannable Approximations to MDP Homomorphisms: Equivariance under Actions
Figure 2 for Plannable Approximations to MDP Homomorphisms: Equivariance under Actions
Figure 3 for Plannable Approximations to MDP Homomorphisms: Equivariance under Actions
Figure 4 for Plannable Approximations to MDP Homomorphisms: Equivariance under Actions
Viaarxiv icon

Gradient $\ell_1$ Regularization for Quantization Robustness

Add code
Feb 18, 2020
Figure 1 for Gradient $\ell_1$ Regularization for Quantization Robustness
Figure 2 for Gradient $\ell_1$ Regularization for Quantization Robustness
Figure 3 for Gradient $\ell_1$ Regularization for Quantization Robustness
Figure 4 for Gradient $\ell_1$ Regularization for Quantization Robustness
Viaarxiv icon

Estimating Gradients for Discrete Random Variables by Sampling without Replacement

Add code
Feb 14, 2020
Figure 1 for Estimating Gradients for Discrete Random Variables by Sampling without Replacement
Figure 2 for Estimating Gradients for Discrete Random Variables by Sampling without Replacement
Figure 3 for Estimating Gradients for Discrete Random Variables by Sampling without Replacement
Figure 4 for Estimating Gradients for Discrete Random Variables by Sampling without Replacement
Viaarxiv icon

Simple and Accurate Uncertainty Quantification from Bias-Variance Decomposition

Add code
Feb 13, 2020
Figure 1 for Simple and Accurate Uncertainty Quantification from Bias-Variance Decomposition
Figure 2 for Simple and Accurate Uncertainty Quantification from Bias-Variance Decomposition
Figure 3 for Simple and Accurate Uncertainty Quantification from Bias-Variance Decomposition
Figure 4 for Simple and Accurate Uncertainty Quantification from Bias-Variance Decomposition
Viaarxiv icon