Alert button
Picture for Marleen de Bruijne

Marleen de Bruijne

Alert button

for the ALFA study

Leveraging point annotations in segmentation learning with boundary loss

Add code
Bookmark button
Alert button
Nov 06, 2023
Eva Breznik, Hoel Kervadec, Filip Malmberg, Joel Kullberg, Håkan Ahlström, Marleen de Bruijne, Robin Strand

Viaarxiv icon

Source Identification: A Self-Supervision Task for Dense Prediction

Add code
Bookmark button
Alert button
Jul 05, 2023
Shuai Chen, Subhradeep Kayal, Marleen de Bruijne

Figure 1 for Source Identification: A Self-Supervision Task for Dense Prediction
Figure 2 for Source Identification: A Self-Supervision Task for Dense Prediction
Figure 3 for Source Identification: A Self-Supervision Task for Dense Prediction
Figure 4 for Source Identification: A Self-Supervision Task for Dense Prediction
Viaarxiv icon

On the dice loss gradient and the ways to mimic it

Add code
Bookmark button
Alert button
Apr 09, 2023
Hoel Kervadec, Marleen de Bruijne

Figure 1 for On the dice loss gradient and the ways to mimic it
Figure 2 for On the dice loss gradient and the ways to mimic it
Figure 3 for On the dice loss gradient and the ways to mimic it
Figure 4 for On the dice loss gradient and the ways to mimic it
Viaarxiv icon

Why is the winner the best?

Add code
Bookmark button
Alert button
Mar 30, 2023
Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Sharib Ali, Vincent Andrearczyk, Marc Aubreville, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Veronika Cheplygina, Marie Daum, Marleen de Bruijne, Adrien Depeursinge, Reuben Dorent, Jan Egger, David G. Ellis, Sandy Engelhardt, Melanie Ganz, Noha Ghatwary, Gabriel Girard, Patrick Godau, Anubha Gupta, Lasse Hansen, Kanako Harada, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Pierre Jannin, Ali Emre Kavur, Oldřich Kodym, Michal Kozubek, Jianning Li, Hongwei Li, Jun Ma, Carlos Martín-Isla, Bjoern Menze, Alison Noble, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Tim Rädsch, Jonathan Rafael-Patiño, Vivek Singh Bawa, Stefanie Speidel, Carole H. Sudre, Kimberlin van Wijnen, Martin Wagner, Donglai Wei, Amine Yamlahi, Moi Hoon Yap, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Dogu Baran Aydogan, Binod Bhattarai, Louise Bloch, Raphael Brüngel, Jihoon Cho, Chanyeol Choi, Qi Dou, Ivan Ezhov, Christoph M. Friedrich, Clifton Fuller, Rebati Raman Gaire, Adrian Galdran, Álvaro García Faura, Maria Grammatikopoulou, SeulGi Hong, Mostafa Jahanifar, Ikbeom Jang, Abdolrahim Kadkhodamohammadi, Inha Kang, Florian Kofler, Satoshi Kondo, Hugo Kuijf, Mingxing Li, Minh Huan Luu, Tomaž Martinčič, Pedro Morais, Mohamed A. Naser, Bruno Oliveira, David Owen, Subeen Pang, Jinah Park, Sung-Hong Park, Szymon Płotka, Elodie Puybareau, Nasir Rajpoot, Kanghyun Ryu, Numan Saeed, Adam Shephard, Pengcheng Shi, Dejan Štepec, Ronast Subedi, Guillaume Tochon, Helena R. Torres, Helene Urien, João L. Vilaça, Kareem Abdul Wahid, Haojie Wang, Jiacheng Wang, Liansheng Wang, Xiyue Wang, Benedikt Wiestler, Marek Wodzinski, Fangfang Xia, Juanying Xie, Zhiwei Xiong, Sen Yang, Yanwu Yang, Zixuan Zhao, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein

Figure 1 for Why is the winner the best?
Figure 2 for Why is the winner the best?
Figure 3 for Why is the winner the best?
Figure 4 for Why is the winner the best?
Viaarxiv icon

Label Refinement Network from Synthetic Error Augmentation for Medical Image Segmentation

Add code
Bookmark button
Alert button
Sep 14, 2022
Shuai Chen, Antonio Garcia Uceda, Jiahang Su, Gijs van Tulder, Lennard Wolff, Theo van Walsum, Marleen de Bruijne

Figure 1 for Label Refinement Network from Synthetic Error Augmentation for Medical Image Segmentation
Figure 2 for Label Refinement Network from Synthetic Error Augmentation for Medical Image Segmentation
Figure 3 for Label Refinement Network from Synthetic Error Augmentation for Medical Image Segmentation
Figure 4 for Label Refinement Network from Synthetic Error Augmentation for Medical Image Segmentation
Viaarxiv icon

Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021

Add code
Bookmark button
Alert button
Aug 15, 2022
Carole H. Sudre, Kimberlin Van Wijnen, Florian Dubost, Hieab Adams, David Atkinson, Frederik Barkhof, Mahlet A. Birhanu, Esther E. Bron, Robin Camarasa, Nish Chaturvedi, Yuan Chen, Zihao Chen, Shuai Chen, Qi Dou, Tavia Evans, Ivan Ezhov, Haojun Gao, Marta Girones Sanguesa, Juan Domingo Gispert, Beatriz Gomez Anson, Alun D. Hughes, M. Arfan Ikram, Silvia Ingala, H. Rolf Jaeger, Florian Kofler, Hugo J. Kuijf, Denis Kutnar, Minho Lee, Bo Li, Luigi Lorenzini, Bjoern Menze, Jose Luis Molinuevo, Yiwei Pan, Elodie Puybareau, Rafael Rehwald, Ruisheng Su, Pengcheng Shi, Lorna Smith, Therese Tillin, Guillaume Tochon, Helene Urien, Bas H. M. van der Velden, Isabelle F. van der Velpen, Benedikt Wiestler, Frank J. Wolters, Pinar Yilmaz, Marius de Groot, Meike W. Vernooij, Marleen de Bruijne

Figure 1 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 2 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 3 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 4 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Viaarxiv icon

A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation

Add code
Bookmark button
Alert button
Sep 22, 2021
Robin Camarasa, Daniel Bos, Jeroen Hendrikse, Paul Nederkoorn, M. Eline Kooi, Aad van der Lugt, Marleen de Bruijne

Figure 1 for A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Figure 2 for A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Figure 3 for A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Figure 4 for A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Viaarxiv icon

Deep Learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge

Add code
Bookmark button
Alert button
Aug 10, 2021
Alain Lalande, Zhihao Chen, Thibaut Pommier, Thomas Decourselle, Abdul Qayyum, Michel Salomon, Dominique Ginhac, Youssef Skandarani, Arnaud Boucher, Khawla Brahim, Marleen de Bruijne, Robin Camarasa, Teresa M. Correia, Xue Feng, Kibrom B. Girum, Anja Hennemuth, Markus Huellebrand, Raabid Hussain, Matthias Ivantsits, Jun Ma, Craig Meyer, Rishabh Sharma, Jixi Shi, Nikolaos V. Tsekos, Marta Varela, Xiyue Wang, Sen Yang, Hannu Zhang, Yichi Zhang, Yuncheng Zhou, Xiahai Zhuang, Raphael Couturier, Fabrice Meriaudeau

Figure 1 for Deep Learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
Figure 2 for Deep Learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
Figure 3 for Deep Learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
Figure 4 for Deep Learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
Viaarxiv icon

Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT

Add code
Bookmark button
Alert button
Jul 20, 2021
Gerda Bortsova, Daniel Bos, Florian Dubost, Meike W. Vernooij, M. Kamran Ikram, Gijs van Tulder, Marleen de Bruijne

Figure 1 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Figure 2 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Figure 3 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Figure 4 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Viaarxiv icon