Alert button
Picture for Meike W. Vernooij

Meike W. Vernooij

Alert button

for the Heart-Brain Connection Consortium

Prior-knowledge-informed deep learning for lacune detection and quantification using multi-site brain MRI

Add code
Bookmark button
Alert button
Jun 18, 2023
Bo Li, Jeroen de Bresser, Wiro Niessen, Matthias van Osch, Wiesje M. van der Flier, Geert Jan Biessels, Meike W. Vernooij, Esther Bron

Figure 1 for Prior-knowledge-informed deep learning for lacune detection and quantification using multi-site brain MRI
Figure 2 for Prior-knowledge-informed deep learning for lacune detection and quantification using multi-site brain MRI
Viaarxiv icon

Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021

Add code
Bookmark button
Alert button
Aug 15, 2022
Carole H. Sudre, Kimberlin Van Wijnen, Florian Dubost, Hieab Adams, David Atkinson, Frederik Barkhof, Mahlet A. Birhanu, Esther E. Bron, Robin Camarasa, Nish Chaturvedi, Yuan Chen, Zihao Chen, Shuai Chen, Qi Dou, Tavia Evans, Ivan Ezhov, Haojun Gao, Marta Girones Sanguesa, Juan Domingo Gispert, Beatriz Gomez Anson, Alun D. Hughes, M. Arfan Ikram, Silvia Ingala, H. Rolf Jaeger, Florian Kofler, Hugo J. Kuijf, Denis Kutnar, Minho Lee, Bo Li, Luigi Lorenzini, Bjoern Menze, Jose Luis Molinuevo, Yiwei Pan, Elodie Puybareau, Rafael Rehwald, Ruisheng Su, Pengcheng Shi, Lorna Smith, Therese Tillin, Guillaume Tochon, Helene Urien, Bas H. M. van der Velden, Isabelle F. van der Velpen, Benedikt Wiestler, Frank J. Wolters, Pinar Yilmaz, Marius de Groot, Meike W. Vernooij, Marleen de Bruijne

Figure 1 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 2 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 3 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 4 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Viaarxiv icon

Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT

Add code
Bookmark button
Alert button
Jul 20, 2021
Gerda Bortsova, Daniel Bos, Florian Dubost, Meike W. Vernooij, M. Kamran Ikram, Gijs van Tulder, Marleen de Bruijne

Figure 1 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Figure 2 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Figure 3 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Figure 4 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Viaarxiv icon

Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration

Add code
Bookmark button
Alert button
Dec 28, 2020
Bo Li, Wiro J. Niessen, Stefan Klein, Marius de Groot, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron

Figure 1 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 2 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 3 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 4 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Viaarxiv icon

Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI

Add code
Bookmark button
Alert button
Nov 03, 2020
Bo Li, Wiro J. Niessen, Stefan Klein, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron

Figure 1 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Figure 2 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Figure 3 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Viaarxiv icon

Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging

Add code
Bookmark button
Alert button
May 26, 2020
Bo Li, Marius de Groot, Rebecca M. E. Steketee, Rozanna Meijboom, Marion Smits, Meike W. Vernooij, M. Arfan Ikram, Jiren Liu, Wiro J. Niessen, Esther E. Bron

Figure 1 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 2 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 3 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 4 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Viaarxiv icon

When Weak Becomes Strong: Robust Quantification of White Matter Hyperintensities in Brain MRI scans

Add code
Bookmark button
Alert button
Apr 12, 2020
Oliver Werner, Kimberlin M. H. van Wijnen, Wiro J. Niessen, Marius de Groot, Meike W. Vernooij, Florian Dubost, Marleen de Bruijne

Figure 1 for When Weak Becomes Strong: Robust Quantification of White Matter Hyperintensities in Brain MRI scans
Figure 2 for When Weak Becomes Strong: Robust Quantification of White Matter Hyperintensities in Brain MRI scans
Figure 3 for When Weak Becomes Strong: Robust Quantification of White Matter Hyperintensities in Brain MRI scans
Viaarxiv icon

Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network

Add code
Bookmark button
Alert button
Jul 29, 2019
Kimberlin M. H. van Wijnen, Florian Dubost, Pinar Yilmaz, M. Arfan Ikram, Wiro J. Niessen, Hieab Adams, Meike W. Vernooij, Marleen de Bruijne

Figure 1 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Figure 2 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Figure 3 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Figure 4 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Viaarxiv icon

Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners

Add code
Bookmark button
Alert button
Mar 15, 2017
Veronika Cheplygina, Annegreet van Opbroek, M. Arfan Ikram, Meike W. Vernooij, Marleen de Bruijne

Figure 1 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Figure 2 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Figure 3 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Figure 4 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Viaarxiv icon