Alert button
Picture for Esther E. Bron

Esther E. Bron

Alert button

for the ALFA study

An Interpretable Machine Learning Model with Deep Learning-based Imaging Biomarkers for Diagnosis of Alzheimer's Disease

Aug 15, 2023
Wenjie Kang, Bo Li, Janne M. Papma, Lize C. Jiskoot, Peter Paul De Deyn, Geert Jan Biessels, Jurgen A. H. R. Claassen, Huub A. M. Middelkoop, Wiesje M. van der Flier, Inez H. G. B. Ramakers, Stefan Klein, Esther E. Bron

Figure 1 for An Interpretable Machine Learning Model with Deep Learning-based Imaging Biomarkers for Diagnosis of Alzheimer's Disease
Figure 2 for An Interpretable Machine Learning Model with Deep Learning-based Imaging Biomarkers for Diagnosis of Alzheimer's Disease
Figure 3 for An Interpretable Machine Learning Model with Deep Learning-based Imaging Biomarkers for Diagnosis of Alzheimer's Disease
Figure 4 for An Interpretable Machine Learning Model with Deep Learning-based Imaging Biomarkers for Diagnosis of Alzheimer's Disease
Viaarxiv icon

Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021

Aug 15, 2022
Carole H. Sudre, Kimberlin Van Wijnen, Florian Dubost, Hieab Adams, David Atkinson, Frederik Barkhof, Mahlet A. Birhanu, Esther E. Bron, Robin Camarasa, Nish Chaturvedi, Yuan Chen, Zihao Chen, Shuai Chen, Qi Dou, Tavia Evans, Ivan Ezhov, Haojun Gao, Marta Girones Sanguesa, Juan Domingo Gispert, Beatriz Gomez Anson, Alun D. Hughes, M. Arfan Ikram, Silvia Ingala, H. Rolf Jaeger, Florian Kofler, Hugo J. Kuijf, Denis Kutnar, Minho Lee, Bo Li, Luigi Lorenzini, Bjoern Menze, Jose Luis Molinuevo, Yiwei Pan, Elodie Puybareau, Rafael Rehwald, Ruisheng Su, Pengcheng Shi, Lorna Smith, Therese Tillin, Guillaume Tochon, Helene Urien, Bas H. M. van der Velden, Isabelle F. van der Velpen, Benedikt Wiestler, Frank J. Wolters, Pinar Yilmaz, Marius de Groot, Meike W. Vernooij, Marleen de Bruijne

Figure 1 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 2 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 3 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 4 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Viaarxiv icon

Computer-aided diagnosis and prediction in brain disorders

Jun 29, 2022
Vikram Venkatraghavan, Sebastian R. van der Voort, Daniel Bos, Marion Smits, Frederik Barkhof, Wiro J. Niessen, Stefan Klein, Esther E. Bron

Figure 1 for Computer-aided diagnosis and prediction in brain disorders
Figure 2 for Computer-aided diagnosis and prediction in brain disorders
Figure 3 for Computer-aided diagnosis and prediction in brain disorders
Viaarxiv icon

Ten years of image analysis and machine learning competitions in dementia

Dec 15, 2021
Esther E. Bron, Stefan Klein, Annika Reinke, Janne M. Papma, Lena Maier-Hein, Daniel C. Alexander, Neil P. Oxtoby

Figure 1 for Ten years of image analysis and machine learning competitions in dementia
Figure 2 for Ten years of image analysis and machine learning competitions in dementia
Figure 3 for Ten years of image analysis and machine learning competitions in dementia
Figure 4 for Ten years of image analysis and machine learning competitions in dementia
Viaarxiv icon

Reproducible radiomics through automated machine learning validated on twelve clinical applications

Aug 19, 2021
Martijn P. A. Starmans, Sebastian R. van der Voort, Thomas Phil, Milea J. M. Timbergen, Melissa Vos, Guillaume A. Padmos, Wouter Kessels, David Hanff, Dirk J. Grunhagen, Cornelis Verhoef, Stefan Sleijfer, Martin J. van den Bent, Marion Smits, Roy S. Dwarkasing, Christopher J. Els, Federico Fiduzi, Geert J. L. H. van Leenders, Anela Blazevic, Johannes Hofland, Tessa Brabander, Renza A. H. van Gils, Gaston J. H. Franssen, Richard A. Feelders, Wouter W. de Herder, Florian E. Buisman, Francois E. J. A. Willemssen, Bas Groot Koerkamp, Lindsay Angus, Astrid A. M. van der Veldt, Ana Rajicic, Arlette E. Odink, Mitchell Deen, Jose M. Castillo T., Jifke Veenland, Ivo Schoots, Michel Renckens, Michail Doukas, Rob A. de Man, Jan N. M. IJzermans, Razvan L. Miclea, Peter B. Vermeulen, Esther E. Bron, Maarten G. Thomeer, Jacob J. Visser, Wiro J. Niessen, Stefan Klein

Figure 1 for Reproducible radiomics through automated machine learning validated on twelve clinical applications
Figure 2 for Reproducible radiomics through automated machine learning validated on twelve clinical applications
Figure 3 for Reproducible radiomics through automated machine learning validated on twelve clinical applications
Figure 4 for Reproducible radiomics through automated machine learning validated on twelve clinical applications
Viaarxiv icon

Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration

Dec 28, 2020
Bo Li, Wiro J. Niessen, Stefan Klein, Marius de Groot, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron

Figure 1 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 2 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 3 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 4 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Viaarxiv icon

Cross-Cohort Generalizability of Deep and Conventional Machine Learning for MRI-based Diagnosis and Prediction of Alzheimer's Disease

Dec 16, 2020
Esther E. Bron, Stefan Klein, Janne M. Papma, Lize C. Jiskoot, Vikram Venkatraghavan, Jara Linders, Pauline Aalten, Peter Paul De Deyn, Geert Jan Biessels, Jurgen A. H. R. Claassen, Huub A. M. Middelkoop, Marion Smits, Wiro J. Niessen, John C. van Swieten, Wiesje M. van der Flier, Inez H. G. B. Ramakers, Aad van der Lugt

Figure 1 for Cross-Cohort Generalizability of Deep and Conventional Machine Learning for MRI-based Diagnosis and Prediction of Alzheimer's Disease
Figure 2 for Cross-Cohort Generalizability of Deep and Conventional Machine Learning for MRI-based Diagnosis and Prediction of Alzheimer's Disease
Figure 3 for Cross-Cohort Generalizability of Deep and Conventional Machine Learning for MRI-based Diagnosis and Prediction of Alzheimer's Disease
Figure 4 for Cross-Cohort Generalizability of Deep and Conventional Machine Learning for MRI-based Diagnosis and Prediction of Alzheimer's Disease
Viaarxiv icon

Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI

Nov 03, 2020
Bo Li, Wiro J. Niessen, Stefan Klein, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron

Figure 1 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Figure 2 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Figure 3 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Viaarxiv icon

Analyzing the effect of APOE on Alzheimer's disease progression using an event-based model for stratified populations

Sep 15, 2020
Vikram Venkatraghavan, Stefan Klein, Lana Fani, Leontine S. Ham, Henri Vrooman, M. Kamran Ikram, Wiro J. Niessen, Esther E. Bron

Figure 1 for Analyzing the effect of APOE on Alzheimer's disease progression using an event-based model for stratified populations
Figure 2 for Analyzing the effect of APOE on Alzheimer's disease progression using an event-based model for stratified populations
Figure 3 for Analyzing the effect of APOE on Alzheimer's disease progression using an event-based model for stratified populations
Figure 4 for Analyzing the effect of APOE on Alzheimer's disease progression using an event-based model for stratified populations
Viaarxiv icon

Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging

May 26, 2020
Bo Li, Marius de Groot, Rebecca M. E. Steketee, Rozanna Meijboom, Marion Smits, Meike W. Vernooij, M. Arfan Ikram, Jiren Liu, Wiro J. Niessen, Esther E. Bron

Figure 1 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 2 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 3 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 4 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Viaarxiv icon