Abstract:Slow-motion replays provide a thrilling perspective on pivotal moments within sports games, offering a fresh and captivating visual experience. However, capturing slow-motion footage typically demands high-tech, expensive cameras and infrastructures. Deep learning Video Frame Interpolation (VFI) techniques have emerged as a promising avenue, capable of generating high-speed footage from regular camera feeds. Moreover, the utilization of event-based cameras has recently gathered attention as they provide valuable motion information between frames, further enhancing the VFI performances. In this work, we present a first investigation of event-based VFI models for generating sports slow-motion videos. Particularly, we design and implement a bi-camera recording setup, including an RGB and an event-based camera to capture sports videos, to temporally align and spatially register both cameras. Our experimental validation demonstrates that TimeLens, an off-the-shelf event-based VFI model, can effectively generate slow-motion footage for sports videos. This first investigation underscores the practical utility of event-based cameras in producing sports slow-motion content and lays the groundwork for future research endeavors in this domain.
Abstract:Action spotting is crucial in sports analytics as it enables the precise identification and categorization of pivotal moments in sports matches, providing insights that are essential for performance analysis and tactical decision-making. The fragmentation of existing methodologies, however, impedes the progression of sports analytics, necessitating a unified codebase to support the development and deployment of action spotting for video analysis. In this work, we introduce OSL-ActionSpotting, a Python library that unifies different action spotting algorithms to streamline research and applications in sports video analytics. OSL-ActionSpotting encapsulates various state-of-the-art techniques into a singular, user-friendly framework, offering standardized processes for action spotting and analysis across multiple datasets. We successfully integrated three cornerstone action spotting methods into OSL-ActionSpotting, achieving performance metrics that match those of the original, disparate codebases. This unification within a single library preserves the effectiveness of each method and enhances usability and accessibility for researchers and practitioners in sports analytics. By bridging the gaps between various action spotting techniques, OSL-ActionSpotting significantly contributes to the field of sports video analysis, fostering enhanced analytical capabilities and collaborative research opportunities. The scalable and modularized design of the library ensures its long-term relevance and adaptability to future technological advancements in the domain.
Abstract:In the era of the Internet of Things (IoT), objects connect through a dynamic network, empowered by technologies like 5G, enabling real-time data sharing. However, smart objects, notably autonomous vehicles, face challenges in critical local computations due to limited resources. Lightweight AI models offer a solution but struggle with diverse data distributions. To address this limitation, we propose a novel Multi-Stream Cellular Test-Time Adaptation (MSC-TTA) setup where models adapt on the fly to a dynamic environment divided into cells. Then, we propose a real-time adaptive student-teacher method that leverages the multiple streams available in each cell to quickly adapt to changing data distributions. We validate our methodology in the context of autonomous vehicles navigating across cells defined based on location and weather conditions. To facilitate future benchmarking, we release a new multi-stream large-scale synthetic semantic segmentation dataset, called DADE, and show that our multi-stream approach outperforms a single-stream baseline. We believe that our work will open research opportunities in the IoT and 5G eras, offering solutions for real-time model adaptation.
Abstract:Tracking and identifying athletes on the pitch holds a central role in collecting essential insights from the game, such as estimating the total distance covered by players or understanding team tactics. This tracking and identification process is crucial for reconstructing the game state, defined by the athletes' positions and identities on a 2D top-view of the pitch, (i.e. a minimap). However, reconstructing the game state from videos captured by a single camera is challenging. It requires understanding the position of the athletes and the viewpoint of the camera to localize and identify players within the field. In this work, we formalize the task of Game State Reconstruction and introduce SoccerNet-GSR, a novel Game State Reconstruction dataset focusing on football videos. SoccerNet-GSR is composed of 200 video sequences of 30 seconds, annotated with 9.37 million line points for pitch localization and camera calibration, as well as over 2.36 million athlete positions on the pitch with their respective role, team, and jersey number. Furthermore, we introduce GS-HOTA, a novel metric to evaluate game state reconstruction methods. Finally, we propose and release an end-to-end baseline for game state reconstruction, bootstrapping the research on this task. Our experiments show that GSR is a challenging novel task, which opens the field for future research. Our dataset and codebase are publicly available at https://github.com/SoccerNet/sn-gamestate.
Abstract:Camera calibration is a crucial component in the realm of sports analytics, as it serves as the foundation to extract 3D information out of the broadcast images. Despite the significance of camera calibration research in sports analytics, progress is impeded by outdated benchmarking criteria. Indeed, the annotation data and evaluation metrics provided by most currently available benchmarks strongly favor and incite the development of sports field registration methods, i.e. methods estimating homographies that map the sports field plane to the image plane. However, such homography-based methods are doomed to overlook the broader capabilities of camera calibration in bridging the 3D world to the image. In particular, real-world non-planar sports field elements (such as goals, corner flags, baskets, ...) and image distortion caused by broadcast camera lenses are out of the scope of sports field registration methods. To overcome these limitations, we designed a new benchmarking protocol, named ProCC, based on two principles: (1) the protocol should be agnostic to the camera model chosen for a camera calibration method, and (2) the protocol should fairly evaluate camera calibration methods using the reprojection of arbitrary yet accurately known 3D objects. Indirectly, we also provide insights into the metric used in SoccerNet-calibration, which solely relies on image annotation data of viewed 3D objects as ground truth, thus implementing our protocol. With experiments on the World Cup 2014, CARWC, and SoccerNet datasets, we show that our benchmarking protocol provides fairer evaluations of camera calibration methods. By defining our requirements for proper benchmarking, we hope to pave the way for a new stage in camera calibration for sports applications with high accuracy standards.
Abstract:The rapid advancement of artificial intelligence has led to significant improvements in automated decision-making. However, the increased performance of models often comes at the cost of explainability and transparency of their decision-making processes. In this paper, we investigate the capabilities of large language models to explain decisions, using football refereeing as a testing ground, given its decision complexity and subjectivity. We introduce the Explainable Video Assistant Referee System, X-VARS, a multi-modal large language model designed for understanding football videos from the point of view of a referee. X-VARS can perform a multitude of tasks, including video description, question answering, action recognition, and conducting meaningful conversations based on video content and in accordance with the Laws of the Game for football referees. We validate X-VARS on our novel dataset, SoccerNet-XFoul, which consists of more than 22k video-question-answer triplets annotated by over 70 experienced football referees. Our experiments and human study illustrate the impressive capabilities of X-VARS in interpreting complex football clips. Furthermore, we highlight the potential of X-VARS to reach human performance and support football referees in the future.
Abstract:Self-supervised pre-training of image encoders is omnipresent in the literature, particularly following the introduction of Masked autoencoders (MAE). Current efforts attempt to learn object-centric representations from motion in videos. In particular, SiamMAE recently introduced a Siamese network, training a shared-weight encoder from two frames of a video with a high asymmetric masking ratio (95%). In this work, we propose CropMAE, an alternative approach to the Siamese pre-training introduced by SiamMAE. Our method specifically differs by exclusively considering pairs of cropped images sourced from the same image but cropped differently, deviating from the conventional pairs of frames extracted from a video. CropMAE therefore alleviates the need for video datasets, while maintaining competitive performances and drastically reducing pre-training time. Furthermore, we demonstrate that CropMAE learns similar object-centric representations without explicit motion, showing that current self-supervised learning methods do not learn objects from motion, but rather thanks to the Siamese architecture. Finally, CropMAE achieves the highest masking ratio to date (98.5%), enabling the reconstruction of images using only two visible patches. Our code is available at https://github.com/alexandre-eymael/CropMAE.
Abstract:The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.
Abstract:When used by autonomous vehicles for trajectory planning or obstacle avoidance, depth estimation methods need to be reliable. Therefore, estimating the quality of the depth outputs is critical. In this paper, we show how M4Depth, a state-of-the-art depth estimation method designed for unmanned aerial vehicle (UAV) applications, can be enhanced to perform joint depth and uncertainty estimation. For that, we present a solution to convert the uncertainty estimates related to parallax generated by M4Depth into uncertainty estimates related to depth, and show that it outperforms the standard probabilistic approach. Our experiments on various public datasets demonstrate that our method performs consistently, even in zero-shot transfer. Besides, our method offers a compelling value when compared to existing multi-view depth estimation methods as it performs similarly on a multi-view depth estimation benchmark despite being 2.5 times faster and causal, as opposed to other methods. The code of our method is publicly available at https://github.com/michael-fonder/M4DepthU .
Abstract:Soccer is more than just a game - it is a passion that transcends borders and unites people worldwide. From the roar of the crowds to the excitement of the commentators, every moment of a soccer match is a thrill. Yet, with so many games happening simultaneously, fans cannot watch them all live. Notifications for main actions can help, but lack the engagement of live commentary, leaving fans feeling disconnected. To fulfill this need, we propose in this paper a novel task of dense video captioning focusing on the generation of textual commentaries anchored with single timestamps. To support this task, we additionally present a challenging dataset consisting of almost 37k timestamped commentaries across 715.9 hours of soccer broadcast videos. Additionally, we propose a first benchmark and baseline for this task, highlighting the difficulty of temporally anchoring commentaries yet showing the capacity to generate meaningful commentaries. By providing broadcasters with a tool to summarize the content of their video with the same level of engagement as a live game, our method could help satisfy the needs of the numerous fans who follow their team but cannot necessarily watch the live game. We believe our method has the potential to enhance the accessibility and understanding of soccer content for a wider audience, bringing the excitement of the game to more people.