Abstract:We study stochastic linear bandits with heavy-tailed rewards, where the rewards have a finite $(1+\epsilon)$-absolute central moment bounded by $\upsilon$ for some $\epsilon \in (0,1]$. We improve both upper and lower bounds on the minimax regret compared to prior work. When $\upsilon = \mathcal{O}(1)$, the best prior known regret upper bound is $\tilde{\mathcal{O}}(d T^{\frac{1}{1+\epsilon}})$. While a lower with the same scaling has been given, it relies on a construction using $\upsilon = \mathcal{O}(d)$, and adapting the construction to the bounded-moment regime with $\upsilon = \mathcal{O}(1)$ yields only a $\Omega(d^{\frac{\epsilon}{1+\epsilon}} T^{\frac{1}{1+\epsilon}})$ lower bound. This matches the known rate for multi-armed bandits and is generally loose for linear bandits, in particular being $\sqrt{d}$ below the optimal rate in the finite-variance case ($\epsilon = 1$). We propose a new elimination-based algorithm guided by experimental design, which achieves regret $\tilde{\mathcal{O}}(d^{\frac{1+3\epsilon}{2(1+\epsilon)}} T^{\frac{1}{1+\epsilon}})$, thus improving the dependence on $d$ for all $\epsilon \in (0,1)$ and recovering a known optimal result for $\epsilon = 1$. We also establish a lower bound of $\Omega(d^{\frac{2\epsilon}{1+\epsilon}} T^{\frac{1}{1+\epsilon}})$, which strictly improves upon the multi-armed bandit rate and highlights the hardness of heavy-tailed linear bandit problems. For finite action sets, we derive similarly improved upper and lower bounds for regret. Finally, we provide action set dependent regret upper bounds showing that for some geometries, such as $l_p$-norm balls for $p \le 1 + \epsilon$, we can further reduce the dependence on $d$, and we can handle infinite-dimensional settings via the kernel trick, in particular establishing new regret bounds for the Mat\'ern kernel that are the first to be sublinear for all $\epsilon \in (0, 1]$.
Abstract:We initiate the study of a repeated principal-agent problem over a finite horizon $T$, where a principal sequentially interacts with $K\geq 2$ types of agents arriving in an adversarial order. At each round, the principal strategically chooses one of the $N$ arms to incentivize for an arriving agent of unknown type. The agent then chooses an arm based on its own utility and the provided incentive, and the principal receives a corresponding reward. The objective is to minimize regret against the best incentive in hindsight. Without prior knowledge of agent behavior, we show that the problem becomes intractable, leading to linear regret. We analyze two key settings where sublinear regret is achievable. In the first setting, the principal knows the arm each agent type would select greedily for any given incentive. Under this setting, we propose an algorithm that achieves a regret bound of $O(\min\{\sqrt{KT\log N},K\sqrt{T}\})$ and provide a matching lower bound up to a $\log K$ factor. In the second setting, an agent's response varies smoothly with the incentive and is governed by a Lipschitz constant $L\geq 1$. Under this setting, we show that there is an algorithm with a regret bound of $\tilde{O}((LN)^{1/3}T^{2/3})$ and establish a matching lower bound up to logarithmic factors. Finally, we extend our algorithmic results for both settings by allowing the principal to incentivize multiple arms simultaneously in each round.
Abstract:In linear bandits, how can a learner effectively learn when facing corrupted rewards? While significant work has explored this question, a holistic understanding across different adversarial models and corruption measures is lacking, as is a full characterization of the minimax regret bounds. In this work, we compare two types of corruptions commonly considered: strong corruption, where the corruption level depends on the action chosen by the learner, and weak corruption, where the corruption level does not depend on the action chosen by the learner. We provide a unified framework to analyze these corruptions. For stochastic linear bandits, we fully characterize the gap between the minimax regret under strong and weak corruptions. We also initiate the study of corrupted adversarial linear bandits, obtaining upper and lower bounds with matching dependencies on the corruption level. Next, we reveal a connection between corruption-robust learning and learning with gap-dependent mis-specification, a setting first studied by Liu et al. (2023a), where the misspecification level of an action or policy is proportional to its suboptimality. We present a general reduction that enables any corruption-robust algorithm to handle gap-dependent misspecification. This allows us to recover the results of Liu et al. (2023a) in a black-box manner and significantly generalize them to settings like linear MDPs, yielding the first results for gap-dependent misspecification in reinforcement learning. However, this general reduction does not attain the optimal rate for gap-dependent misspecification. Motivated by this, we develop a specialized algorithm that achieves optimal bounds for gap-dependent misspecification in linear bandits, thus answering an open question posed by Liu et al. (2023a).
Abstract:We consider maximizing a monotonic, submodular set function $f: 2^{[n]} \rightarrow [0,1]$ under stochastic bandit feedback. Specifically, $f$ is unknown to the learner but at each time $t=1,\dots,T$ the learner chooses a set $S_t \subset [n]$ with $|S_t| \leq k$ and receives reward $f(S_t) + \eta_t$ where $\eta_t$ is mean-zero sub-Gaussian noise. The objective is to minimize the learner's regret over $T$ times with respect to ($1-e^{-1}$)-approximation of maximum $f(S_*)$ with $|S_*| = k$, obtained through greedy maximization of $f$. To date, the best regret bound in the literature scales as $k n^{1/3} T^{2/3}$. And by trivially treating every set as a unique arm one deduces that $\sqrt{ {n \choose k} T }$ is also achievable. In this work, we establish the first minimax lower bound for this setting that scales like $\mathcal{O}(\min_{i \le k}(in^{1/3}T^{2/3} + \sqrt{n^{k-i}T}))$. Moreover, we propose an algorithm that is capable of matching the lower bound regret.