Abstract:In this study, we consider the problem of generating visual explanations in visual foundation models. Numerous methods have been proposed for this purpose; however, they often cannot be applied to complex models due to their lack of adaptability. To overcome these limitations, we propose a novel explanation generation method in visual foundation models that is aimed at both generating explanations and partially updating model parameters to enhance interpretability. Our approach introduces two novel mechanisms: Attention Lattice Adapter (ALA) and Alternating Epoch Architect (AEA). ALA mechanism simplifies the process by eliminating the need for manual layer selection, thus enhancing the model's adaptability and interpretability. Moreover, the AEA mechanism, which updates ALA's parameters every other epoch, effectively addresses the common issue of overly small attention regions. We evaluated our method on two benchmark datasets, CUB-200-2011 and ImageNet-S. Our results showed that our method outperformed the baseline methods in terms of mean intersection over union (IoU), insertion score, deletion score, and insertion-deletion score on both the CUB-200-2011 and ImageNet-S datasets. Notably, our best model achieved a 53.2-point improvement in mean IoU on the CUB-200-2011 dataset compared with the baselines.

Abstract:In this work, we address the problem of predicting the future success of open-vocabulary object manipulation tasks. Conventional approaches typically determine success or failure after the action has been carried out. However, they make it difficult to prevent potential hazards and rely on failures to trigger replanning, thereby reducing the efficiency of object manipulation sequences. To overcome these challenges, we propose a model, which predicts the alignment between a pre-manipulation egocentric image with the planned trajectory and a given natural language instruction. We introduce a Multi-Level Trajectory Fusion module, which employs a state-of-the-art deep state-space model and a transformer encoder in parallel to capture multi-level time-series self-correlation within the end effector trajectory. Our experimental results indicate that the proposed method outperformed existing methods, including foundation models.

Abstract:Accurate, reliable solar flare prediction is crucial for mitigating potential disruptions to critical infrastructure, while predicting solar flares remains a significant challenge. Existing methods based on heuristic physical features often lack representation learning from solar images. On the other hand, end-to-end learning approaches struggle to model long-range temporal dependencies in solar images. In this study, we propose Deep Space Weather Model (Deep SWM), which is based on multiple deep state space models for handling both ten-channel solar images and long-range spatio-temporal dependencies. Deep SWM also features a sparse masked autoencoder, a novel pretraining strategy that employs a two-phase masking approach to preserve crucial regions such as sunspots while compressing spatial information. Furthermore, we built FlareBench, a new public benchmark for solar flare prediction covering a full 11-year solar activity cycle, to validate our method. Our method outperformed baseline methods and even human expert performance on standard metrics in terms of performance and reliability. The project page can be found at https://keio-smilab25.github.io/DeepSWM.

Abstract:Multimodal Large Language Models (MLLMs) often generate hallucinations, where the output deviates from the visual content. Given that these hallucinations can take diverse forms, detecting hallucinations at a fine-grained level is essential for comprehensive evaluation and analysis. To this end, we propose a novel task of multimodal fine-grained hallucination detection and editing for MLLMs. Moreover, we propose ZINA, a novel method that identifies hallucinated spans at a fine-grained level, classifies their error types into six categories, and suggests appropriate refinements. To train and evaluate models for this task, we constructed VisionHall, a dataset comprising 6.9k outputs from twelve MLLMs manually annotated by 211 annotators, and 20k synthetic samples generated using a graph-based method that captures dependencies among error types. We demonstrated that ZINA outperformed existing methods, including GPT-4o and LLama-3.2, in both detection and editing tasks.

Abstract:We consider the problem of generating free-form mobile manipulation instructions based on a target object image and receptacle image. Conventional image captioning models are not able to generate appropriate instructions because their architectures are typically optimized for single-image. In this study, we propose a model that handles both the target object and receptacle to generate free-form instruction sentences for mobile manipulation tasks. Moreover, we introduce a novel training method that effectively incorporates the scores from both learning-based and n-gram based automatic evaluation metrics as rewards. This method enables the model to learn the co-occurrence relationships between words and appropriate paraphrases. Results demonstrate that our proposed method outperforms baseline methods including representative multimodal large language models on standard automatic evaluation metrics. Moreover, physical experiments reveal that using our method to augment data on language instructions improves the performance of an existing multimodal language understanding model for mobile manipulation.





Abstract:This study addresses a task designed to predict the future success or failure of open-vocabulary object manipulation. In this task, the model is required to make predictions based on natural language instructions, egocentric view images before manipulation, and the given end-effector trajectories. Conventional methods typically perform success prediction only after the manipulation is executed, limiting their efficiency in executing the entire task sequence. We propose a novel approach that enables the prediction of success or failure by aligning the given trajectories and images with natural language instructions. We introduce Trajectory Encoder to apply learnable weighting to the input trajectories, allowing the model to consider temporal dynamics and interactions between objects and the end effector, improving the model's ability to predict manipulation outcomes accurately. We constructed a dataset based on the RT-1 dataset, a large-scale benchmark for open-vocabulary object manipulation tasks, to evaluate our method. The experimental results show that our method achieved a higher prediction accuracy than baseline approaches.





Abstract:This study addresses a task designed to predict the future success or failure of open-vocabulary object manipulation. In this task, the model is required to make predictions based on natural language instructions, egocentric view images before manipulation, and the given end-effector trajectories. Conventional methods typically perform success prediction only after the manipulation is executed, limiting their efficiency in executing the entire task sequence. We propose a novel approach that enables the prediction of success or failure by aligning the given trajectories and images with natural language instructions. We introduce Trajectory Encoder to apply learnable weighting to the input trajectories, allowing the model to consider temporal dynamics and interactions between objects and the end effector, improving the model's ability to predict manipulation outcomes accurately. We constructed a dataset based on the RT-1 dataset, a large-scale benchmark for open-vocabulary object manipulation tasks, to evaluate our method. The experimental results show that our method achieved a higher prediction accuracy than baseline approaches.





Abstract:Growing labor shortages are increasing the demand for domestic service robots (DSRs) to assist in various settings. In this study, we develop a DSR that transports everyday objects to specified pieces of furniture based on open-vocabulary instructions. Our approach focuses on retrieving images of target objects and receptacles from pre-collected images of indoor environments. For example, given an instruction "Please get the right red towel hanging on the metal towel rack and put it in the white washing machine on the left," the DSR is expected to carry the red towel to the washing machine based on the retrieved images. This is challenging because the correct images should be retrieved from thousands of collected images, which may include many images of similar towels and appliances. To address this, we propose RelaX-Former, which learns diverse and robust representations from among positive, unlabeled positive, and negative samples. We evaluated RelaX-Former on a dataset containing real-world indoor images and human annotated instructions including complex referring expressions. The experimental results demonstrate that RelaX-Former outperformed existing baseline models across standard image retrieval metrics. Moreover, we performed physical experiments using a DSR to evaluate the performance of our approach in a zero-shot transfer setting. The experiments involved the DSR to carry objects to specific receptacles based on open-vocabulary instructions, achieving an overall success rate of 75%.





Abstract:In this study, we consider the problem of predicting task success for open-vocabulary manipulation by a manipulator, based on instruction sentences and egocentric images before and after manipulation. Conventional approaches, including multimodal large language models (MLLMs), often fail to appropriately understand detailed characteristics of objects and/or subtle changes in the position of objects. We propose Contrastive $\lambda$-Repformer, which predicts task success for table-top manipulation tasks by aligning images with instruction sentences. Our method integrates the following three key types of features into a multi-level aligned representation: features that preserve local image information; features aligned with natural language; and features structured through natural language. This allows the model to focus on important changes by looking at the differences in the representation between two images. We evaluate Contrastive $\lambda$-Repformer on a dataset based on a large-scale standard dataset, the RT-1 dataset, and on a physical robot platform. The results show that our approach outperformed existing approaches including MLLMs. Our best model achieved an improvement of 8.66 points in accuracy compared to the representative MLLM-based model.





Abstract:In this work, we address the challenge of developing automatic evaluation metrics for image captioning, with a particular focus on robustness against hallucinations. Existing metrics are often inadequate for handling hallucinations, primarily due to their limited ability to compare candidate captions with multifaceted reference captions. To address this shortcoming, we propose DENEB, a novel supervised automatic evaluation metric specifically robust against hallucinations. DENEB incorporates the Sim-Vec Transformer, a mechanism that processes multiple references simultaneously, thereby efficiently capturing the similarity between an image, a candidate caption, and reference captions. To train DENEB, we construct the diverse and balanced Nebula dataset comprising 32,978 images, paired with human judgments provided by 805 annotators. We demonstrated that DENEB achieves state-of-the-art performance among existing LLM-free metrics on the FOIL, Composite, Flickr8K-Expert, Flickr8K-CF, Nebula, and PASCAL-50S datasets, validating its effectiveness and robustness against hallucinations.
