Abstract:Multivariate time series (MTS) forecasting is crucial for decision-making in domains such as weather, energy, and finance. It remains challenging because real-world sequences intertwine slow trends, multi-rate seasonalities, and irregular residuals. Existing methods often rely on rigid, hand-crafted decompositions or generic end-to-end architectures that entangle components and underuse structure shared across variables. To address these limitations, we propose DecompSSM, an end-to-end decomposition framework using three parallel deep state space model branches to capture trend, seasonal, and residual components. The model features adaptive temporal scales via an input-dependent predictor, a refinement module for shared cross-variable context, and an auxiliary loss that enforces reconstruction and orthogonality. Across standard benchmarks (ECL, Weather, ETTm2, and PEMS04), DecompSSM outperformed strong baselines, indicating the effectiveness of combining component-wise deep state space models and global context refinement.
Abstract:We focus on the automatic evaluation of image captions in both reference-based and reference-free settings. Existing metrics based on large language models (LLMs) favor their own generations; therefore, the neutrality is in question. Most LLM-free metrics do not suffer from such an issue, whereas they do not always demonstrate high performance. To address these issues, we propose Pearl, an LLM-free supervised metric for image captioning, which is applicable to both reference-based and reference-free settings. We introduce a novel mechanism that learns the representations of image--caption and caption--caption similarities. Furthermore, we construct a human-annotated dataset for image captioning metrics, that comprises approximately 333k human judgments collected from 2,360 annotators across over 75k images. Pearl outperformed other existing LLM-free metrics on the Composite, Flickr8K-Expert, Flickr8K-CF, Nebula, and FOIL datasets in both reference-based and reference-free settings. Our project page is available at https://pearl.kinsta.page/.
Abstract:In this study, we consider the problem of generating visual explanations in visual foundation models. Numerous methods have been proposed for this purpose; however, they often cannot be applied to complex models due to their lack of adaptability. To overcome these limitations, we propose a novel explanation generation method in visual foundation models that is aimed at both generating explanations and partially updating model parameters to enhance interpretability. Our approach introduces two novel mechanisms: Attention Lattice Adapter (ALA) and Alternating Epoch Architect (AEA). ALA mechanism simplifies the process by eliminating the need for manual layer selection, thus enhancing the model's adaptability and interpretability. Moreover, the AEA mechanism, which updates ALA's parameters every other epoch, effectively addresses the common issue of overly small attention regions. We evaluated our method on two benchmark datasets, CUB-200-2011 and ImageNet-S. Our results showed that our method outperformed the baseline methods in terms of mean intersection over union (IoU), insertion score, deletion score, and insertion-deletion score on both the CUB-200-2011 and ImageNet-S datasets. Notably, our best model achieved a 53.2-point improvement in mean IoU on the CUB-200-2011 dataset compared with the baselines.