We tackle the panoptic segmentation problem with a conditional random field (CRF) model. Panoptic segmentation involves assigning a semantic label and an instance label to each pixel of a given image. At each pixel, the semantic label and the instance label should be compatible. Furthermore, a good panoptic segmentation should have a number of other desirable properties such as the spatial and color consistency of the labeling (similar looking neighboring pixels should have the same semantic label and the instance label). To tackle this problem, we propose a CRF model, named Bipartite CRF or BCRF, with two types of random variables for semantic and instance labels. In this formulation, various energies are defined within and across the two types of random variables to encourage a consistent panoptic segmentation. We propose a mean-field-based efficient inference algorithm for solving the CRF and empirically show its convergence properties. This algorithm is fully differentiable, and therefore, BCRF inference can be included as a trainable module in a deep network. In the experimental evaluation, we quantitatively and qualitatively show that the BCRF yields superior panoptic segmentation results in practice.
Activity recognition in videos in a deep-learning setting---or otherwise---uses both static and pre-computed motion components. The method of combining the two components, whilst keeping the burden on the deep network less, still remains uninvestigated. Moreover, it is not clear what the level of contribution of individual components is, and how to control the contribution. In this work, we use a combination of CNN-generated static features and motion features in the form of motion tubes. We propose three schemas for combining static and motion components: based on a variance ratio, principal components, and Cholesky decomposition. The Cholesky decomposition based method allows the control of contributions. The ratio given by variance analysis of static and motion features match well with the experimental optimal ratio used in the Cholesky decomposition based method. The resulting activity recognition system is better or on par with existing state-of-the-art when tested with three popular datasets. The findings also enable us to characterize a dataset with respect to its richness in motion information.