Abstract:Polyp detectors trained on clean datasets often underperform in real-world endoscopy, where illumination changes, motion blur, and occlusions degrade image quality. Existing approaches struggle with the domain gap between controlled laboratory conditions and clinical practice, where adverse imaging conditions are prevalent. In this work, we propose AdaptiveDetector, a novel two-stage detector-verifier framework comprising a YOLOv11 detector with a vision-language model (VLM) verifier. The detector adaptively adjusts per-frame confidence thresholds under VLM guidance, while the verifier is fine-tuned with Group Relative Policy Optimization (GRPO) using an asymmetric, cost-sensitive reward function specifically designed to discourage missed detections -- a critical clinical requirement. To enable realistic assessment under challenging conditions, we construct a comprehensive synthetic testbed by systematically degrading clean datasets with adverse conditions commonly encountered in clinical practice, providing a rigorous benchmark for zero-shot evaluation. Extensive zero-shot evaluation on synthetically degraded CVC-ClinicDB and Kvasir-SEG images demonstrates that our approach improves recall by 14 to 22 percentage points over YOLO alone, while precision remains within 0.7 points below to 1.7 points above the baseline. This combination of adaptive thresholding and cost-sensitive reinforcement learning achieves clinically aligned, open-world polyp detection with substantially fewer false negatives, thereby reducing the risk of missed precancerous polyps and improving patient outcomes.




Abstract:In order to test whether artificial intelligence can create qualified classical poetry like humans, the author proposes a study of Chinese classical poetry generation based on a pre-trained model. This paper mainly tries to use BART and other pre training models, proposes FS2TEXT and RR2TEXT to generate metrical poetry text and even specific style poetry text, and solves the problem that the user's writing intention gradually reduces the relevance of the generated poetry text. In order to test the model's results, the authors selected ancient poets, by combining it with BART's poetic model work, developed a set of AI poetry Turing problems, it was reviewed by a group of poets and poetry writing researchers. There were more than 600 participants, and the final results showed that, high-level poetry lovers can't distinguish between AI activity and human activity, this indicates that the author's working methods are not significantly different from human activities. The model of poetry generation studied by the author generalizes works that cannot be distinguished from those of advanced scholars. The number of modern Chinese poets has reached 5 million. However, many modern Chinese poets lack language ability and skills as a result of their childhood learning. However, many modern poets have no creative inspiration, and the author's model can help them. They can look at this model when they choose words and phrases and they can write works based on the poems they already have, and they can write their own poems. The importance of poetry lies in the author's thoughts and reflections. It doesn't matter how good AI poetry is. The only thing that matters is for people to see and inspire them.