MERL
Abstract:Since diarization and source separation of meeting data are closely related tasks, we here propose an approach to perform the two objectives jointly. It builds upon the target-speaker voice activity detection (TS-VAD) diarization approach, which assumes that initial speaker embeddings are available. We replace the final combined speaker activity estimation network of TS-VAD with a network that produces speaker activity estimates at a time-frequency resolution. Those act as masks for source extraction, either via masking or via beamforming. The technique can be applied both for single-channel and multi-channel input and, in both cases, achieves a new state-of-the-art word error rate (WER) on the LibriCSS meeting data recognition task. We further compute speaker-aware and speaker-agnostic WERs to isolate the contribution of diarization errors to the overall WER performance.
Abstract:Emulating the human ability to solve the cocktail party problem, i.e., focus on a source of interest in a complex acoustic scene, is a long standing goal of audio source separation research. Much of this research investigates separating speech from noise, speech from speech, musical instruments from each other, or sound events from each other. In this paper, we focus on the cocktail fork problem, which takes a three-pronged approach to source separation by separating an audio mixture such as a movie soundtrack or podcast into the three broad categories of speech, music, and sound effects (SFX - understood to include ambient noise and natural sound events). We benchmark the performance of several deep learning-based source separation models on this task and evaluate them with respect to simple objective measures such as signal-to-distortion ratio (SDR) as well as objective metrics that better correlate with human perception. Furthermore, we thoroughly evaluate how source separation can influence downstream transcription tasks. First, we investigate the task of activity detection on the three sources as a way to both further improve source separation and perform transcription. We formulate the transcription tasks as speech recognition for speech and audio tagging for music and SFX. We observe that, while the use of source separation estimates improves transcription performance in comparison to the original soundtrack, performance is still sub-optimal due to artifacts introduced by the separation process. Therefore, we thoroughly investigate how remixing of the three separated source stems at various relative levels can reduce artifacts and consequently improve the transcription performance. We find that remixing music and SFX interferences at a target SNR of 17.5 dB reduces speech recognition word error rate, and similar impact from remixing is observed for tagging music and SFX content.
Abstract:We introduce a framework for audio source separation using embeddings on a hyperbolic manifold that compactly represent the hierarchical relationship between sound sources and time-frequency features. Inspired by recent successes modeling hierarchical relationships in text and images with hyperbolic embeddings, our algorithm obtains a hyperbolic embedding for each time-frequency bin of a mixture signal and estimates masks using hyperbolic softmax layers. On a synthetic dataset containing mixtures of multiple people talking and musical instruments playing, our hyperbolic model performed comparably to a Euclidean baseline in terms of source to distortion ratio, with stronger performance at low embedding dimensions. Furthermore, we find that time-frequency regions containing multiple overlapping sources are embedded towards the center (i.e., the most uncertain region) of the hyperbolic space, and we can use this certainty estimate to efficiently trade-off between artifact introduction and interference reduction when isolating individual sounds.
Abstract:Traditional source separation approaches train deep neural network models end-to-end with all the data available at once by minimizing the empirical risk on the whole training set. On the inference side, after training the model, the user fetches a static computation graph and runs the full model on some specified observed mixture signal to get the estimated source signals. Additionally, many of those models consist of several basic processing blocks which are applied sequentially. We argue that we can significantly increase resource efficiency during both training and inference stages by reformulating a model's training and inference procedures as iterative mappings of latent signal representations. First, we can apply the same processing block more than once on its output to refine the input signal and consequently improve parameter efficiency. During training, we can follow a block-wise procedure which enables a reduction on memory requirements. Thus, one can train a very complicated network structure using significantly less computation compared to end-to-end training. During inference, we can dynamically adjust how many processing blocks and iterations of a specific block an input signal needs using a gating module.
Abstract:This paper proposes reverberation as supervision (RAS), a novel unsupervised loss function for single-channel reverberant speech separation. Prior methods for unsupervised separation required the synthesis of mixtures of mixtures or assumed the existence of a teacher model, making them difficult to consider as potential methods explaining the emergence of separation abilities in an animal's auditory system. We assume the availability of two-channel mixtures at training time, and train a neural network to separate the sources given one of the channels as input such that the other channel may be predicted from the separated sources. As the relationship between the room impulse responses (RIRs) of each channel depends on the locations of the sources, which are unknown to the network, the network cannot rely on learning that relationship. Instead, our proposed loss function fits each of the separated sources to the mixture in the target channel via Wiener filtering, and compares the resulting mixture to the ground-truth one. We show that minimizing the scale-invariant signal-to-distortion ratio (SI-SDR) of the predicted right-channel mixture with respect to the ground truth implicitly guides the network towards separating the left-channel sources. On a semi-supervised reverberant speech separation task based on the WHAMR! dataset, using training data where just 5% (resp., 10%) of the mixtures are labeled with associated isolated sources, we achieve 70% (resp., 78%) of the SI-SDR improvement obtained when training with supervision on the full training set, while a model trained only on the labeled data obtains 43% (resp., 45%).
Abstract:Recent research has shown remarkable performance in leveraging multiple extraneous conditional and non-mutually exclusive semantic concepts for sound source separation, allowing the flexibility to extract a given target source based on multiple different queries. In this work, we propose a new optimal condition training (OCT) method for single-channel target source separation, based on greedy parameter updates using the highest performing condition among equivalent conditions associated with a given target source. Our experiments show that the complementary information carried by the diverse semantic concepts significantly helps to disentangle and isolate sources of interest much more efficiently compared to single-conditioned models. Moreover, we propose a variation of OCT with condition refinement, in which an initial conditional vector is adapted to the given mixture and transformed to a more amenable representation for target source extraction. We showcase the effectiveness of OCT on diverse source separation experiments where it improves upon permutation invariant models with oracle assignment and obtains state-of-the-art performance in the more challenging task of text-based source separation, outperforming even dedicated text-only conditioned models.
Abstract:Diffusion models have recently shown promising results for difficult enhancement tasks such as the conditional and unconditional restoration of natural images and audio signals. In this work, we explore the possibility of leveraging a recently proposed advanced iterative diffusion model, namely cold diffusion, to recover clean speech signals from noisy signals. The unique mathematical properties of the sampling process from cold diffusion could be utilized to restore high-quality samples from arbitrary degradations. Based on these properties, we propose an improved training algorithm and objective to help the model generalize better during the sampling process. We verify our proposed framework by investigating two model architectures. Experimental results on benchmark speech enhancement dataset VoiceBank-DEMAND demonstrate the strong performance of the proposed approach compared to representative discriminative models and diffusion-based enhancement models.
Abstract:Speaker diarization algorithms address the "who spoke when" problem in audio recordings. Algorithms trained end-to-end have proven superior to classical modular-cascaded systems in constrained scenarios with a small number of speakers. However, their performance for in-the-wild recordings containing more speakers with shorter utterance lengths remains to be investigated. In this paper, we address this gap, showing that an attractor-based end-to-end system can also perform remarkably well in the latter scenario when first pre-trained on a carefully-designed simulated dataset that matches the distribution of in-the-wild recordings. We also propose to use an attention mechanism to increase the network capacity in decoding more speaker attractors, and to jointly train the attractors on a speaker recognition task to improve the speaker attractor representation. Even though the model we propose is audio-only, we find it significantly outperforms both audio-only and audio-visual baselines on the AVA-AVD benchmark dataset, achieving state-of-the-art results with an absolute reduction in diarization error of 23.3%.
Abstract:Deep learning based speech enhancement in the short-term Fourier transform (STFT) domain typically uses a large window length such as 32 ms. A larger window contains more samples and the frequency resolution can be higher for potentially better enhancement. This however incurs an algorithmic latency of 32 ms in an online setup, because the overlap-add algorithm used in the inverse STFT (iSTFT) is also performed based on the same 32 ms window size. To reduce this inherent latency, we adapt a conventional dual window size approach, where a regular input window size is used for STFT but a shorter output window is used for the overlap-add in the iSTFT, for STFT-domain deep learning based frame-online speech enhancement. Based on this STFT and iSTFT configuration, we employ single- or multi-microphone complex spectral mapping for frame-online enhancement, where a deep neural network (DNN) is trained to predict the real and imaginary (RI) components of target speech from the mixture RI components. In addition, we use the RI components predicted by the DNN to conduct frame-online beamforming, the results of which are then used as extra features for a second DNN to perform frame-online post-filtering. The frequency-domain beamforming in between the two DNNs can be easily integrated with complex spectral mapping and is designed to not incur any algorithmic latency. Additionally, we propose a future-frame prediction technique to further reduce the algorithmic latency. Evaluation results on a noisy-reverberant speech enhancement task demonstrate the effectiveness of the proposed algorithms. Compared with Conv-TasNet, our STFT-domain system can achieve better enhancement performance for a comparable amount of computation, or comparable performance with less computation, maintaining strong performance at an algorithmic latency as low as 2 ms.
Abstract:We introduce a new paradigm for single-channel target source separation where the sources of interest can be distinguished using non-mutually exclusive concepts (e.g., loudness, gender, language, spatial location, etc). Our proposed heterogeneous separation framework can seamlessly leverage datasets with large distribution shifts and learn cross-domain representations under a variety of concepts used as conditioning. Our experiments show that training separation models with heterogeneous conditions facilitates the generalization to new concepts with unseen out-of-domain data while also performing substantially higher than single-domain specialist models. Notably, such training leads to more robust learning of new harder source separation discriminative concepts and can yield improvements over permutation invariant training with oracle source selection. We analyze the intrinsic behavior of source separation training with heterogeneous metadata and propose ways to alleviate emerging problems with challenging separation conditions. We release the collection of preparation recipes for all datasets used to further promote research towards this challenging task.