Abstract:Text-to-image generation and image captioning are recently emerged as a new experimental paradigm to assess machine intelligence. They predict continuous quantity accompanied by their sampling techniques in the generation, making evaluation complicated and intractable to get marginal distributions. Based on a recent trend that multimodal generative evaluations exploit a vison-and-language pre-trained model, we propose the negative Gaussian cross-mutual information using the CLIP features as a unified metric, coined by Mutual Information Divergence (MID). To validate, we extensively compare it with competing metrics using carefully-generated or human-annotated judgments in text-to-image generation and image captioning tasks. The proposed MID significantly outperforms the competitive methods by having consistency across benchmarks, sample parsimony, and robustness toward the exploited CLIP model. We look forward to seeing the underrepresented implications of the Gaussian cross-mutual information in multimodal representation learning and the future works based on this novel proposition.
Abstract:This paper presents Probabilistic Video Contrastive Learning, a self-supervised representation learning method that bridges contrastive learning with probabilistic representation. We hypothesize that the clips composing the video have different distributions in short-term duration, but can represent the complicated and sophisticated video distribution through combination in a common embedding space. Thus, the proposed method represents video clips as normal distributions and combines them into a Mixture of Gaussians to model the whole video distribution. By sampling embeddings from the whole video distribution, we can circumvent the careful sampling strategy or transformations to generate augmented views of the clips, unlike previous deterministic methods that have mainly focused on such sample generation strategies for contrastive learning. We further propose a stochastic contrastive loss to learn proper video distributions and handle the inherent uncertainty from the nature of the raw video. Experimental results verify that our probabilistic embedding stands as a state-of-the-art video representation learning for action recognition and video retrieval on the most popular benchmarks, including UCF101 and HMDB51.
Abstract:The rise of deep neural networks has led to several breakthroughs for semantic segmentation. In spite of this, a model trained on source domain often fails to work properly in new challenging domains, that is directly concerned with the generalization capability of the model. In this paper, we present a novel memory-guided domain generalization method for semantic segmentation based on meta-learning framework. Especially, our method abstracts the conceptual knowledge of semantic classes into categorical memory which is constant beyond the domains. Upon the meta-learning concept, we repeatedly train memory-guided networks and simulate virtual test to 1) learn how to memorize a domain-agnostic and distinct information of classes and 2) offer an externally settled memory as a class-guidance to reduce the ambiguity of representation in the test data of arbitrary unseen domain. To this end, we also propose memory divergence and feature cohesion losses, which encourage to learn memory reading and update processes for category-aware domain generalization. Extensive experiments for semantic segmentation demonstrate the superior generalization capability of our method over state-of-the-art works on various benchmarks.
Abstract:Over the past few years, image-to-image (I2I) translation methods have been proposed to translate a given image into diverse outputs. Despite the impressive results, they mainly focus on the I2I translation between two domains, so the multi-domain I2I translation still remains a challenge. To address this problem, we propose a novel multi-domain unsupervised image-to-image translation (MDUIT) framework that leverages the decomposed content feature and appearance adaptive convolution to translate an image into a target appearance while preserving the given geometric content. We also exploit a contrast learning objective, which improves the disentanglement ability and effectively utilizes multi-domain image data in the training process by pairing the semantically similar images. This allows our method to learn the diverse mappings between multiple visual domains with only a single framework. We show that the proposed method produces visually diverse and plausible results in multiple domains compared to the state-of-the-art methods.
Abstract:Recently, vector-quantized image modeling has demonstrated impressive performance on generation tasks such as text-to-image generation. However, we discover that the current image quantizers do not satisfy translation equivariance in the quantized space due to aliasing, degrading performance in the downstream text-to-image generation and image-to-text generation, even in simple experimental setups. Instead of focusing on anti-aliasing, we take a direct approach to encourage translation equivariance in the quantized space. In particular, we explore a desirable property of image quantizers, called 'Translation Equivariance in the Quantized Space' and propose a simple but effective way to achieve translation equivariance by regularizing orthogonality in the codebook embedding vectors. Using this method, we improve accuracy by +22% in text-to-image generation and +26% in image-to-text generation, outperforming the VQGAN.
Abstract:EHR systems lack a unified code system forrepresenting medical concepts, which acts asa barrier for the deployment of deep learningmodels in large scale to multiple clinics and hos-pitals. To overcome this problem, we introduceDescription-based Embedding,DescEmb, a code-agnostic representation learning framework forEHR. DescEmb takes advantage of the flexibil-ity of neural language understanding models toembed clinical events using their textual descrip-tions rather than directly mapping each event toa dedicated embedding. DescEmb outperformedtraditional code-based embedding in extensiveexperiments, especially in a zero-shot transfertask (one hospital to another), and was able totrain a single unified model for heterogeneousEHR datasets.
Abstract:Periodic signals play an important role in daily lives. Although conventional sequential models have shown remarkable success in various fields, they still come short in modeling periodicity; they either collapse, diverge or ignore details. In this paper, we introduce a novel framework inspired by Fourier series to generate periodic signals. We first decompose the given signals into multiple sines and cosines and then conditionally generate periodic signals with the output components. We have shown our model efficacy on three tasks: reconstruction, imputation and conditional generation. Our model outperforms baselines in all tasks and shows more stable and refined results.
Abstract:Video prediction, forecasting the future frames from a sequence of input frames, is a challenging task since the view changes are influenced by various factors, such as the global context surrounding the scene and local motion dynamics. In this paper, we propose a new framework to integrate these complementary attributes to predict complex pixel dynamics through deep networks. We present global context propagation networks that iteratively aggregate the non-local neighboring representations to preserve the contextual information over the past frames. To capture the local motion pattern of objects, we also devise local filter memory networks that generate adaptive filter kernels by storing the prototypical motion of moving objects in the memory. The proposed framework, utilizing the outputs from both networks, can address blurry predictions and color distortion. We conduct experiments on Caltech pedestrian and UCF101 datasets, and demonstrate state-of-the-art results. Especially for multi-step prediction, we obtain an outstanding performance in quantitative and qualitative evaluation.
Abstract:Domain generalization aims to learn a prediction model on multi-domain source data such that the model can generalize to a target domain with unknown statistics. Most existing approaches have been developed under the assumption that the source data is well-balanced in terms of both domain and class. However, real-world training data collected with different composition biases often exhibits severe distribution gaps for domain and class, leading to substantial performance degradation. In this paper, we propose a self-balanced domain generalization framework that adaptively learns the weights of losses to alleviate the bias caused by different distributions of the multi-domain source data. The self-balanced scheme is based on an auxiliary reweighting network that iteratively updates the weight of loss conditioned on the domain and class information by leveraging balanced meta data. Experimental results demonstrate the effectiveness of our method overwhelming state-of-the-art works for domain generalization.
Abstract:The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable and interpretable. Simulations have helped advance the state-of-the-art in this domain, by providing the ability to systematically vary parameters (e.g., confounders) and generate examples of the outcomes in the case of counterfactual scenarios. However, simulating complex temporal causal events in multi-agent scenarios, such as those that exist in driving and vehicle navigation, is challenging. To help address this, we present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning in the safety-critical context. A core component of our work is to introduce \textit{agency}, such that it is simple to define and create complex scenarios using high-level definitions. The vehicles then operate with agency to complete these objectives, meaning low-level behaviors need only be controlled if necessary. We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment. Finally, we highlight challenges and opportunities for future work.