Abstract:Adversarial attacks on stochastic bandits have traditionally relied on some unrealistic assumptions, such as per-round reward manipulation and unbounded perturbations, limiting their relevance to real-world systems. We propose a more practical threat model, Fake Data Injection, which reflects realistic adversarial constraints: the attacker can inject only a limited number of bounded fake feedback samples into the learner's history, simulating legitimate interactions. We design efficient attack strategies under this model, explicitly addressing both magnitude constraints (on reward values) and temporal constraints (on when and how often data can be injected). Our theoretical analysis shows that these attacks can mislead both Upper Confidence Bound (UCB) and Thompson Sampling algorithms into selecting a target arm in nearly all rounds while incurring only sublinear attack cost. Experiments on synthetic and real-world datasets validate the effectiveness of our strategies, revealing significant vulnerabilities in widely used stochastic bandit algorithms under practical adversarial scenarios.
Abstract:Robotic assembly tasks require object-pose estimation, particularly for tasks that avoid costly mechanical constraints. Object symmetry complicates the direct mapping of sensory input to object rotation, as the rotation becomes ambiguous and lacks a unique training target. Some proposed solutions involve evaluating multiple pose hypotheses against the input or predicting a probability distribution, but these approaches suffer from significant computational overhead. Here, we show that representing object rotation with a neural population code overcomes these limitations, enabling a direct mapping to rotation and end-to-end learning. As a result, population codes facilitate fast and accurate pose estimation. On the T-LESS dataset, we achieve inference in 3.2 milliseconds on an Apple M1 CPU and a Maximum Symmetry-Aware Surface Distance accuracy of 84.7% using only gray-scale image input, compared to 69.7% accuracy when directly mapping to pose.