Abstract:With the increasing popularity of large language models (LLMs) for a variety of tasks, there has been a growing interest in strategies that can predict which out of a set of LLMs will yield a successful answer at low cost. This problem promises to become more and more relevant as providers like Microsoft allow users to easily create custom LLM "assistants" specialized to particular types of queries. However, some tasks (i.e., queries) may be too specialized and difficult for a single LLM to handle alone. These applications often benefit from breaking down the task into smaller subtasks, each of which can then be executed by a LLM expected to perform well on that specific subtask. For example, in extracting a diagnosis from medical records, one can first select an LLM to summarize the record, select another to validate the summary, and then select another, possibly different, LLM to extract the diagnosis from the summarized record. Unlike existing LLM selection or routing algorithms, this setting requires that we select a sequence of LLMs, with the output of each LLM feeding into the next and potentially influencing its success. Thus, unlike single LLM selection, the quality of each subtask's output directly affects the inputs, and hence the cost and success rate, of downstream LLMs, creating complex performance dependencies that must be learned and accounted for during selection. We propose a neural contextual bandit-based algorithm that trains neural networks that model LLM success on each subtask in an online manner, thus learning to guide the LLM selections for the different subtasks, even in the absence of historical LLM performance data. Experiments on telecommunications question answering and medical diagnosis prediction datasets illustrate the effectiveness of our proposed approach compared to other LLM selection algorithms.
Abstract:Recent advancements in machine learning (ML) have enabled its deployment on resource-constrained edge devices, fostering innovative applications such as intelligent environmental sensing. However, these devices, particularly microcontrollers (MCUs), face substantial challenges due to limited memory, computing capabilities, and the absence of dedicated floating-point units (FPUs). These constraints hinder the deployment of complex ML models, especially those requiring lifelong learning capabilities. To address these challenges, we propose Tin-Tin, an integer-based on-device training framework designed specifically for low-power MCUs. Tin-Tin introduces novel integer rescaling techniques to efficiently manage dynamic ranges and facilitate efficient weight updates using integer data types. Unlike existing methods optimized for devices with FPUs, GPUs, or FPGAs, Tin-Tin addresses the unique demands of tiny MCUs, prioritizing energy efficiency and optimized memory utilization. We validate the effectiveness of Tin-Tin through end-to-end application examples on real-world tiny devices, demonstrating its potential to support energy-efficient and sustainable ML applications on edge platforms.
Abstract:The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.