Abstract:Recent months have witnessed rapid progress in 3D generation based on diffusion models. Most advances require fine-tuning existing 2D Stable Diffsuions into multi-view settings or tedious distilling operations and hence fall short of 3D human generation due to the lack of diverse 3D human datasets. We present an alternative scheme named MVHuman to generate human radiance fields from text guidance, with consistent multi-view images directly sampled from pre-trained Stable Diffsuions without any fine-tuning or distilling. Our core is a multi-view sampling strategy to tailor the denoising processes of the pre-trained network for generating consistent multi-view images. It encompasses view-consistent conditioning, replacing the original noises with ``consistency-guided noises'', optimizing latent codes, as well as utilizing cross-view attention layers. With the multi-view images through the sampling process, we adopt geometry refinement and 3D radiance field generation followed by a subsequent neural blending scheme for free-view rendering. Extensive experiments demonstrate the efficacy of our method, as well as its superiority to state-of-the-art 3D human generation methods.
Abstract:We are living in a world surrounded by diverse and "smart" devices with rich modalities of sensing ability. Conveniently capturing the interactions between us humans and these objects remains far-reaching. In this paper, we present I'm-HOI, a monocular scheme to faithfully capture the 3D motions of both the human and object in a novel setting: using a minimal amount of RGB camera and object-mounted Inertial Measurement Unit (IMU). It combines general motion inference and category-aware refinement. For the former, we introduce a holistic human-object tracking method to fuse the IMU signals and the RGB stream and progressively recover the human motions and subsequently the companion object motions. For the latter, we tailor a category-aware motion diffusion model, which is conditioned on both the raw IMU observations and the results from the previous stage under over-parameterization representation. It significantly refines the initial results and generates vivid body, hand, and object motions. Moreover, we contribute a large dataset with ground truth human and object motions, dense RGB inputs, and rich object-mounted IMU measurements. Extensive experiments demonstrate the effectiveness of I'm-HOI under a hybrid capture setting. Our dataset and code will be released to the community.
Abstract:Existing hands datasets are largely short-range and the interaction is weak due to the self-occlusion and self-similarity of hands, which can not yet fit the need for interacting hands motion generation. To rescue the data scarcity, we propose HandDiffuse12.5M, a novel dataset that consists of temporal sequences with strong two-hand interactions. HandDiffuse12.5M has the largest scale and richest interactions among the existing two-hand datasets. We further present a strong baseline method HandDiffuse for the controllable motion generation of interacting hands using various controllers. Specifically, we apply the diffusion model as the backbone and design two motion representations for different controllers. To reduce artifacts, we also propose Interaction Loss which explicitly quantifies the dynamic interaction process. Our HandDiffuse enables various applications with vivid two-hand interactions, i.e., motion in-betweening and trajectory control. Experiments show that our method outperforms the state-of-the-art techniques in motion generation and can also contribute to data augmentation for other datasets. Our dataset, corresponding codes, and pre-trained models will be disseminated to the community for future research towards two-hand interaction modeling.
Abstract:We have recently seen tremendous progress in photo-real human modeling and rendering. Yet, efficiently rendering realistic human performance and integrating it into the rasterization pipeline remains challenging. In this paper, we present HiFi4G, an explicit and compact Gaussian-based approach for high-fidelity human performance rendering from dense footage. Our core intuition is to marry the 3D Gaussian representation with non-rigid tracking, achieving a compact and compression-friendly representation. We first propose a dual-graph mechanism to obtain motion priors, with a coarse deformation graph for effective initialization and a fine-grained Gaussian graph to enforce subsequent constraints. Then, we utilize a 4D Gaussian optimization scheme with adaptive spatial-temporal regularizers to effectively balance the non-rigid prior and Gaussian updating. We also present a companion compression scheme with residual compensation for immersive experiences on various platforms. It achieves a substantial compression rate of approximately 25 times, with less than 2MB of storage per frame. Extensive experiments demonstrate the effectiveness of our approach, which significantly outperforms existing approaches in terms of optimization speed, rendering quality, and storage overhead.
Abstract:In the past decade, deep conditional generative models have revolutionized the generation of realistic images, extending their application from entertainment to scientific domains. Single-particle cryo-electron microscopy (cryo-EM) is crucial in resolving near-atomic resolution 3D structures of proteins, such as the SARS-COV-2 spike protein. To achieve high-resolution reconstruction, AI models for particle picking and pose estimation have been adopted. However, their performance is still limited as they lack high-quality annotated datasets. To address this, we introduce physics-informed generative cryo-electron microscopy (GenEM), which for the first time integrates physical-based cryo-EM simulation with a generative unpaired noise translation to generate physically correct synthetic cryo-EM datasets with realistic noises. Initially, GenEM simulates the cryo-EM imaging process based on a virtual specimen. To generate realistic noises, we leverage an unpaired noise translation via contrastive learning with a novel mask-guided sampling scheme. Extensive experiments show that GenEM is capable of generating realistic cryo-EM images. The generated dataset can further enhance particle picking and pose estimation models, eventually improving the reconstruction resolution. We will release our code and annotated synthetic datasets.
Abstract:Neural Radiance Fields (NeRFs) excel in photorealistically rendering static scenes. However, rendering dynamic, long-duration radiance fields on ubiquitous devices remains challenging, due to data storage and computational constraints. In this paper, we introduce VideoRF, the first approach to enable real-time streaming and rendering of dynamic radiance fields on mobile platforms. At the core is a serialized 2D feature image stream representing the 4D radiance field all in one. We introduce a tailored training scheme directly applied to this 2D domain to impose the temporal and spatial redundancy of the feature image stream. By leveraging the redundancy, we show that the feature image stream can be efficiently compressed by 2D video codecs, which allows us to exploit video hardware accelerators to achieve real-time decoding. On the other hand, based on the feature image stream, we propose a novel rendering pipeline for VideoRF, which has specialized space mappings to query radiance properties efficiently. Paired with a deferred shading model, VideoRF has the capability of real-time rendering on mobile devices thanks to its efficiency. We have developed a real-time interactive player that enables online streaming and rendering of dynamic scenes, offering a seamless and immersive free-viewpoint experience across a range of devices, from desktops to mobile phones.
Abstract:We propose a novel end-to-end pipeline for online long-range vectorized high-definition (HD) map construction using on-board camera sensors. The vectorized representation of HD maps, employing polylines and polygons to represent map elements, is widely used by downstream tasks. However, previous schemes designed with reference to dynamic object detection overlook the structural constraints within linear map elements, resulting in performance degradation in long-range scenarios. In this paper, we exploit the properties of map elements to improve the performance of map construction. We extract more accurate bird's eye view (BEV) features guided by their linear structure, and then propose a hierarchical sparse map representation to further leverage the scalability of vectorized map elements and design a progressive decoding mechanism and a supervision strategy based on this representation. Our approach, ScalableMap, demonstrates superior performance on the nuScenes dataset, especially in long-range scenarios, surpassing previous state-of-the-art model by 6.5 mAP while achieving 18.3 FPS. Code is available at https://github.com/jingy1yu/ScalableMap.
Abstract:Neural Radiance Fields (NeRF) have significantly advanced the generation of highly realistic and expressive 3D scenes. However, the task of editing NeRF, particularly in terms of geometry modification, poses a significant challenge. This issue has obstructed NeRF's wider adoption across various applications. To tackle the problem of efficiently editing neural implicit fields, we introduce Neural Impostor, a hybrid representation incorporating an explicit tetrahedral mesh alongside a multigrid implicit field designated for each tetrahedron within the explicit mesh. Our framework bridges the explicit shape manipulation and the geometric editing of implicit fields by utilizing multigrid barycentric coordinate encoding, thus offering a pragmatic solution to deform, composite, and generate neural implicit fields while maintaining a complex volumetric appearance. Furthermore, we propose a comprehensive pipeline for editing neural implicit fields based on a set of explicit geometric editing operations. We show the robustness and adaptability of our system through diverse examples and experiments, including the editing of both synthetic objects and real captured data. Finally, we demonstrate the authoring process of a hybrid synthetic-captured object utilizing a variety of editing operations, underlining the transformative potential of Neural Impostor in the field of 3D content creation and manipulation.
Abstract:We present a novel type of neural fields that uses general radial bases for signal representation. State-of-the-art neural fields typically rely on grid-based representations for storing local neural features and N-dimensional linear kernels for interpolating features at continuous query points. The spatial positions of their neural features are fixed on grid nodes and cannot well adapt to target signals. Our method instead builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals. To further improve the channel-wise capacity of radial basis functions, we propose to compose them with multi-frequency sinusoid functions. This technique extends a radial basis to multiple Fourier radial bases of different frequency bands without requiring extra parameters, facilitating the representation of details. Moreover, by marrying adaptive radial bases with grid-based ones, our hybrid combination inherits both adaptivity and interpolation smoothness. We carefully designed weighting schemes to let radial bases adapt to different types of signals effectively. Our experiments on 2D image and 3D signed distance field representation demonstrate the higher accuracy and compactness of our method than prior arts. When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.
Abstract:Text-to-video is a rapidly growing research area that aims to generate a semantic, identical, and temporal coherence sequence of frames that accurately align with the input text prompt. This study focuses on zero-shot text-to-video generation considering the data- and cost-efficient. To generate a semantic-coherent video, exhibiting a rich portrayal of temporal semantics such as the whole process of flower blooming rather than a set of "moving images", we propose a novel Free-Bloom pipeline that harnesses large language models (LLMs) as the director to generate a semantic-coherence prompt sequence, while pre-trained latent diffusion models (LDMs) as the animator to generate the high fidelity frames. Furthermore, to ensure temporal and identical coherence while maintaining semantic coherence, we propose a series of annotative modifications to adapting LDMs in the reverse process, including joint noise sampling, step-aware attention shift, and dual-path interpolation. Without any video data and training requirements, Free-Bloom generates vivid and high-quality videos, awe-inspiring in generating complex scenes with semantic meaningful frame sequences. In addition, Free-Bloom is naturally compatible with LDMs-based extensions.