Abstract:Current event-/frame-event based trackers undergo evaluation on short-term tracking datasets, however, the tracking of real-world scenarios involves long-term tracking, and the performance of existing tracking algorithms in these scenarios remains unclear. In this paper, we first propose a new long-term and large-scale frame-event single object tracking dataset, termed FELT. It contains 742 videos and 1,594,474 RGB frames and event stream pairs and has become the largest frame-event tracking dataset to date. We re-train and evaluate 15 baseline trackers on our dataset for future works to compare. More importantly, we find that the RGB frames and event streams are naturally incomplete due to the influence of challenging factors and spatially sparse event flow. In response to this, we propose a novel associative memory Transformer network as a unified backbone by introducing modern Hopfield layers into multi-head self-attention blocks to fuse both RGB and event data. Extensive experiments on both FELT and RGB-T tracking dataset LasHeR fully validated the effectiveness of our model. The dataset and source code can be found at \url{https://github.com/Event-AHU/FELT_SOT_Benchmark}.
Abstract:The mainstream human activity recognition (HAR) algorithms are developed based on RGB cameras, which are easily influenced by low-quality images (e.g., low illumination, motion blur). Meanwhile, the privacy protection issue caused by ultra-high definition (HD) RGB cameras aroused more and more people's attention. Inspired by the success of event cameras which perform better on high dynamic range, no motion blur, and low energy consumption, we propose to recognize human actions based on the event stream. We propose a lightweight uncertainty-aware information propagation based Mobile-Former network for efficient pattern recognition, which aggregates the MobileNet and Transformer network effectively. Specifically, we first embed the event images using a stem network into feature representations, then, feed them into uncertainty-aware Mobile-Former blocks for local and global feature learning and fusion. Finally, the features from MobileNet and Transformer branches are concatenated for pattern recognition. Extensive experiments on multiple event-based recognition datasets fully validated the effectiveness of our model. The source code of this work will be released at https://github.com/Event-AHU/Uncertainty_aware_MobileFormer.
Abstract:Recently, 2D convolution has been found unqualified in sound event detection (SED). It enforces translation equivariance on sound events along frequency axis, which is not a shift-invariant dimension. To address this issue, dynamic convolution is used to model the frequency dependency of sound events. In this paper, we proposed the first full-dynamic method named \emph{full-frequency dynamic convolution} (FFDConv). FFDConv generates frequency kernels for every frequency band, which is designed directly in the structure for frequency-dependent modeling. It physically furnished 2D convolution with the capability of frequency-dependent modeling. FFDConv outperforms not only the baseline by 6.6\% in DESED real validation dataset in terms of PSDS1, but outperforms the other full-dynamic methods. In addition, by visualizing features of sound events, we observed that FFDConv could effectively extract coherent features in specific frequency bands, consistent with the vocal continuity of sound events. This proves that FFDConv has great frequency-dependent perception ability.
Abstract:Graph contrastive learning is usually performed by first conducting Graph Data Augmentation (GDA) and then employing a contrastive learning pipeline to train GNNs. As we know that GDA is an important issue for graph contrastive learning. Various GDAs have been developed recently which mainly involve dropping or perturbing edges, nodes, node attributes and edge attributes. However, to our knowledge, it still lacks a universal and effective augmentor that is suitable for different types of graph data. To address this issue, in this paper, we first introduce the graph message representation of graph data. Based on it, we then propose a novel Graph Message Augmentation (GMA), a universal scheme for reformulating many existing GDAs. The proposed unified GMA not only gives a new perspective to understand many existing GDAs but also provides a universal and more effective graph data augmentation for graph self-supervised learning tasks. Moreover, GMA introduces an easy way to implement the mixup augmentor which is natural for images but usually challengeable for graphs. Based on the proposed GMA, we then propose a unified graph contrastive learning, termed Graph Message Contrastive Learning (GMCL), that employs attribution-guided universal GMA for graph contrastive learning. Experiments on many graph learning tasks demonstrate the effectiveness and benefits of the proposed GMA and GMCL approaches.
Abstract:Existing datasets for RGB-DVS tracking are collected with DVS346 camera and their resolution ($346 \times 260$) is low for practical applications. Actually, only visible cameras are deployed in many practical systems, and the newly designed neuromorphic cameras may have different resolutions. The latest neuromorphic sensors can output high-definition event streams, but it is very difficult to achieve strict alignment between events and frames on both spatial and temporal views. Therefore, how to achieve accurate tracking with unaligned neuromorphic and visible sensors is a valuable but unresearched problem. In this work, we formally propose the task of object tracking using unaligned neuromorphic and visible cameras. We build the first unaligned frame-event dataset CRSOT collected with a specially built data acquisition system, which contains 1,030 high-definition RGB-Event video pairs, 304,974 video frames. In addition, we propose a novel unaligned object tracking framework that can realize robust tracking even using the loosely aligned RGB-Event data. Specifically, we extract the template and search regions of RGB and Event data and feed them into a unified ViT backbone for feature embedding. Then, we propose uncertainty perception modules to encode the RGB and Event features, respectively, then, we propose a modality uncertainty fusion module to aggregate the two modalities. These three branches are jointly optimized in the training phase. Extensive experiments demonstrate that our tracker can collaborate the dual modalities for high-performance tracking even without strictly temporal and spatial alignment. The source code, dataset, and pre-trained models will be released at https://github.com/Event-AHU/Cross_Resolution_SOT.
Abstract:Gait datasets are essential for gait research. However, this paper observes that present benchmarks, whether conventional constrained or emerging real-world datasets, fall short regarding covariate diversity. To bridge this gap, we undertake an arduous 20-month effort to collect a cross-covariate gait recognition (CCGR) dataset. The CCGR dataset has 970 subjects and about 1.6 million sequences; almost every subject has 33 views and 53 different covariates. Compared to existing datasets, CCGR has both population and individual-level diversity. In addition, the views and covariates are well labeled, enabling the analysis of the effects of different factors. CCGR provides multiple types of gait data, including RGB, parsing, silhouette, and pose, offering researchers a comprehensive resource for exploration. In order to delve deeper into addressing cross-covariate gait recognition, we propose parsing-based gait recognition (ParsingGait) by utilizing the newly proposed parsing data. We have conducted extensive experiments. Our main results show: 1) Cross-covariate emerges as a pivotal challenge for practical applications of gait recognition. 2) ParsingGait demonstrates remarkable potential for further advancement. 3) Alarmingly, existing SOTA methods achieve less than 43% accuracy on the CCGR, highlighting the urgency of exploring cross-covariate gait recognition. Link: https://github.com/ShinanZou/CCGR.
Abstract:Prevalent nighttime ReID methods typically combine relighting networks and ReID networks in a sequential manner, which not only restricts the ReID performance by the quality of relighting images, but also neglects the effective collaborative modeling between image relighting and person ReID tasks. To handle these problems, we propose a novel Collaborative Enhancement Network called CENet, which performs the multilevel feature interactions in a parallel framework, for nighttime person ReID. In particular, CENet is a parallel Transformer network, in which the designed parallel structure can avoid the impact of the quality of relighting images on ReID performance. To perform effective collaborative modeling between image relighting and person ReID tasks, we integrate the multilevel feature interactions in CENet. Specifically, we share the Transformer encoder to build the low-level feature interaction, and then perform the feature distillation to transfer the high-level features from image relighting to ReID. In addition, the sizes of existing real-world nighttime person ReID datasets are small, and large-scale synthetic ones exhibit substantial domain gaps with real-world data. To leverage both small-scale real-world and large-scale synthetic training data, we develop a multi-domain learning algorithm, which alternately utilizes both kinds of data to reduce the inter-domain difference in the training of CENet. Extensive experiments on two real nighttime datasets, \textit{Night600} and \textit{RGBNT201$_{rgb}$}, and a synthetic nighttime ReID dataset are conducted to validate the effectiveness of CENet. We will release the code and synthetic dataset.
Abstract:Current RGBT tracking researches mainly focus on the modality-complete scenarios, overlooking the modality-missing challenge in real-world scenes. In this work, we comprehensively investigate the impact of modality-missing challenge in RGBT tracking and propose a novel invertible prompt learning approach, which integrates the content-preserving prompts into a well-trained tracking model to adapt to various modality-missing scenarios, for modality-missing RGBT tracking. In particular, given one modality-missing scenario, we propose to utilize the available modality to generate the prompt of the missing modality to adapt to RGBT tracking model. However, the cross-modality gap between available and missing modalities usually causes semantic distortion and information loss in prompt generation. To handle this issue, we propose the invertible prompt learning scheme by incorporating the full reconstruction of the input available modality from the prompt in prompt generation model. Considering that there lacks a modality-missing RGBT tracking dataset and many modality-missing scenarios are difficult to capture, we design a high-quality data simulation method based on hierarchical combination schemes to generate real-world modality-missing data. Extensive experiments on three modality-missing datasets show that our method achieves significant performance improvements compared with state-of-the-art methods. We will release the code and simulation dataset.
Abstract:Cross-modal object tracking is an important research topic in the field of information fusion, and it aims to address imaging limitations in challenging scenarios by integrating switchable visible and near-infrared modalities. However, existing tracking methods face some difficulties in adapting to significant target appearance variations in the presence of modality switch. For instance, model update based tracking methods struggle to maintain stable tracking results during modality switching, leading to error accumulation and model drift. Template based tracking methods solely rely on the template information from first frame and/or last frame, which lacks sufficient representation ability and poses challenges in handling significant target appearance changes. To address this problem, we propose a prototype-based cross-modal object tracker called ProtoTrack, which introduces a novel prototype learning scheme to adapt to significant target appearance variations, for cross-modal object tracking. In particular, we design a multi-modal prototype to represent target information by multi-kind samples, including a fixed sample from the first frame and two representative samples from different modalities. Moreover, we develop a prototype generation algorithm based on two new modules to ensure the prototype representative in different challenges......
Abstract:Gait recognition is a biometric technology that has received extensive attention. Most existing gait recognition algorithms are unimodal, and a few multimodal gait recognition algorithms perform multimodal fusion only once. None of these algorithms may fully exploit the complementary advantages of the multiple modalities. In this paper, by considering the temporal and spatial characteristics of gait data, we propose a multi-stage feature fusion strategy (MSFFS), which performs multimodal fusions at different stages in the feature extraction process. Also, we propose an adaptive feature fusion module (AFFM) that considers the semantic association between silhouettes and skeletons. The fusion process fuses different silhouette areas with their more related skeleton joints. Since visual appearance changes and time passage co-occur in a gait period, we propose a multiscale spatial-temporal feature extractor (MSSTFE) to learn the spatial-temporal linkage features thoroughly. Specifically, MSSTFE extracts and aggregates spatial-temporal linkages information at different spatial scales. Combining the strategy and modules mentioned above, we propose a multi-stage adaptive feature fusion (MSAFF) neural network, which shows state-of-the-art performance in many experiments on three datasets. Besides, MSAFF is equipped with feature dimensional pooling (FD Pooling), which can significantly reduce the dimension of the gait representations without hindering the accuracy. https://github.com/ShinanZou/MSAFF