Abstract:Recent advancements in implicit neural representations have contributed to high-fidelity surface reconstruction and photorealistic novel view synthesis. However, the computational complexity inherent in these methodologies presents a substantial impediment, constraining the attainable frame rates and resolutions in practical applications. In response to this predicament, we propose VQ-NeRF, an effective and efficient pipeline for enhancing implicit neural representations via vector quantization. The essence of our method involves reducing the sampling space of NeRF to a lower resolution and subsequently reinstating it to the original size utilizing a pre-trained VAE decoder, thereby effectively mitigating the sampling time bottleneck encountered during rendering. Although the codebook furnishes representative features, reconstructing fine texture details of the scene remains challenging due to high compression rates. To overcome this constraint, we design an innovative multi-scale NeRF sampling scheme that concurrently optimizes the NeRF model at both compressed and original scales to enhance the network's ability to preserve fine details. Furthermore, we incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions. Extensive experiments demonstrate the effectiveness of our model in achieving the optimal trade-off between rendering quality and efficiency. Evaluation on the DTU, BlendMVS, and H3DS datasets confirms the superior performance of our approach.
Abstract:Learning effective spectral-spatial features is important for the hyperspectral image (HSI) classification task, but the majority of existing HSI classification methods still suffer from modeling complex spectral-spatial relations and characterizing low-level details and high-level semantics comprehensively. As a new class of record-breaking generative models, diffusion models are capable of modeling complex relations for understanding inputs well as learning both high-level and low-level visual features. Meanwhile, diffusion models can capture more abundant features by taking advantage of the extra and unique dimension of timestep t. In view of these, we propose an unsupervised spectral-spatial feature learning framework based on the diffusion model for HSI classification for the first time, named Diff-HSI. Specifically, we first pretrain the diffusion model with unlabeled HSI patches for unsupervised feature learning, and then exploit intermediate hierarchical features from different timesteps for classification. For better using the abundant timestep-wise features, we design a timestep-wise feature bank and a dynamic feature fusion module to construct timestep-wise features, adaptively learning informative multi-timestep representations. Finally, an ensemble of linear classifiers is applied to perform HSI classification. Extensive experiments are conducted on three public HSI datasets, and our results demonstrate that Diff-HSI outperforms state-of-the-art supervised and unsupervised methods for HSI classification.
Abstract:The transformer extends its success from the language to the vision domain. Because of the stacked self-attention and cross-attention blocks, the acceleration deployment of vision transformer on GPU hardware is challenging and also rarely studied. This paper thoroughly designs a compression scheme to maximally utilize the GPU-friendly 2:4 fine-grained structured sparsity and quantization. Specially, an original large model with dense weight parameters is first pruned into a sparse one by 2:4 structured pruning, which considers the GPU's acceleration of 2:4 structured sparse pattern with FP16 data type, then the floating-point sparse model is further quantized into a fixed-point one by sparse-distillation-aware quantization aware training, which considers GPU can provide an extra speedup of 2:4 sparse calculation with integer tensors. A mixed-strategy knowledge distillation is used during the pruning and quantization process. The proposed compression scheme is flexible to support supervised and unsupervised learning styles. Experiment results show GPUSQ-ViT scheme achieves state-of-the-art compression by reducing vision transformer models 6.4-12.7 times on model size and 30.3-62 times on FLOPs with negligible accuracy degradation on ImageNet classification, COCO detection and ADE20K segmentation benchmarking tasks. Moreover, GPUSQ-ViT can boost actual deployment performance by 1.39-1.79 times and 3.22-3.43 times of latency and throughput on A100 GPU, and 1.57-1.69 times and 2.11-2.51 times improvement of latency and throughput on AGX Orin.
Abstract:Due to the emergence of powerful computing resources and large-scale annotated datasets, deep learning has seen wide applications in our daily life. However, most current methods require extensive data collection and retraining when dealing with novel classes never seen before. On the other hand, we humans can quickly recognize new classes by looking at a few samples, which motivates the recent popularity of few-shot learning (FSL) in machine learning communities. Most current FSL approaches work on 2D image domain, however, its implication in 3D perception is relatively under-explored. Not only needs to recognize the unseen examples as in 2D domain, 3D few-shot learning is more challenging with unordered structures, high intra-class variances, and subtle inter-class differences. Moreover, different architectures and learning algorithms make it difficult to study the effectiveness of existing 2D methods when migrating to the 3D domain. In this work, for the first time, we perform systematic and extensive studies of recent 2D FSL and 3D backbone networks for benchmarking few-shot point cloud classification, and we suggest a strong baseline and learning architectures for 3D FSL. Then, we propose a novel plug-and-play component called Cross-Instance Adaptation (CIA) module, to address the high intra-class variances and subtle inter-class differences issues, which can be easily inserted into current baselines with significant performance improvement. Extensive experiments on two newly introduced benchmark datasets, ModelNet40-FS and ShapeNet70-FS, demonstrate the superiority of our proposed network for 3D FSL.
Abstract:Global channel pruning (GCP) aims to remove a subset of channels (filters) across different layers from a deep model without hurting the performance. Previous works focus on either single task model pruning or simply adapting it to multitask scenario, and still face the following problems when handling multitask pruning: 1) Due to the task mismatch, a well-pruned backbone for classification task focuses on preserving filters that can extract category-sensitive information, causing filters that may be useful for other tasks to be pruned during the backbone pruning stage; 2) For multitask predictions, different filters within or between layers are more closely related and interacted than that for single task prediction, making multitask pruning more difficult. Therefore, aiming at multitask model compression, we propose a Performance-Aware Global Channel Pruning (PAGCP) framework. We first theoretically present the objective for achieving superior GCP, by considering the joint saliency of filters from intra- and inter-layers. Then a sequentially greedy pruning strategy is proposed to optimize the objective, where a performance-aware oracle criterion is developed to evaluate sensitivity of filters to each task and preserve the globally most task-related filters. Experiments on several multitask datasets show that the proposed PAGCP can reduce the FLOPs and parameters by over 60% with minor performance drop, and achieves 1.2x$\sim$3.3x acceleration on both cloud and mobile platforms.
Abstract:Existing deep learning-based hyperspectral image (HSI) classification works still suffer from the limitation of the fixed-sized receptive field, leading to difficulties in distinctive spectral-spatial features for ground objects with various sizes and arbitrary shapes. Meanwhile, plenty of previous works ignore asymmetric spectral-spatial dimensions in HSI. To address the above issues, we propose a multi-stage search architecture in order to overcome asymmetric spectral-spatial dimensions and capture significant features. First, the asymmetric pooling on the spectral-spatial dimension maximally retains the essential features of HSI. Then, the 3D convolution with a selectable range of receptive fields overcomes the constraints of fixed-sized convolution kernels. Finally, we extend these two searchable operations to different layers of each stage to build the final architecture. Extensive experiments are conducted on two challenging HSI benchmarks including Indian Pines and Houston University, and results demonstrate the effectiveness of the proposed method with superior performance compared with the related works.
Abstract:Despite substantial progress in no-reference image quality assessment (NR-IQA), previous training models often suffer from over-fitting due to the limited scale of used datasets, resulting in model performance bottlenecks. To tackle this challenge, we explore the potential of leveraging data augmentation to improve data efficiency and enhance model robustness. However, most existing data augmentation methods incur a serious issue, namely that it alters the image quality and leads to training images mismatching with their original labels. Additionally, although only a few data augmentation methods are available for NR-IQA task, their ability to enrich dataset diversity is still insufficient. To address these issues, we propose a effective and general data augmentation based on just noticeable difference (JND) noise mixing for NR-IQA task, named JNDMix. In detail, we randomly inject the JND noise, imperceptible to the human visual system (HVS), into the training image without any adjustment to its label. Extensive experiments demonstrate that JNDMix significantly improves the performance and data efficiency of various state-of-the-art NR-IQA models and the commonly used baseline models, as well as the generalization ability. More importantly, JNDMix facilitates MANIQA to achieve the state-of-the-art performance on LIVEC and KonIQ-10k.
Abstract:Neural Radiance Fields (NeRF) has achieved impressive results in single object scene reconstruction and novel view synthesis, which have been demonstrated on many single modality and single object focused indoor scene datasets like DTU, BMVS, and NeRF Synthetic.However, the study of NeRF on large-scale outdoor scene reconstruction is still limited, as there is no unified outdoor scene dataset for large-scale NeRF evaluation due to expensive data acquisition and calibration costs. In this paper, we propose a large-scale outdoor multi-modal dataset, OMMO dataset, containing complex land objects and scenes with calibrated images, point clouds and prompt annotations. Meanwhile, a new benchmark for several outdoor NeRF-based tasks is established, such as novel view synthesis, surface reconstruction, and multi-modal NeRF. To create the dataset, we capture and collect a large number of real fly-view videos and select high-quality and high-resolution clips from them. Then we design a quality review module to refine images, remove low-quality frames and fail-to-calibrate scenes through a learning-based automatic evaluation plus manual review. Finally, a number of volunteers are employed to add the text descriptions for each scene and key-frame to meet the potential multi-modal requirements in the future. Compared with existing NeRF datasets, our dataset contains abundant real-world urban and natural scenes with various scales, camera trajectories, and lighting conditions. Experiments show that our dataset can benchmark most state-of-the-art NeRF methods on different tasks. We will release the dataset and model weights very soon.
Abstract:The linear ensemble based strategy, i.e., averaging ensemble, has been proposed to improve the performance in unsupervised domain adaptation tasks. However, a typical UDA task is usually challenged by dynamically changing factors, such as variable weather, views, and background in the unlabeled target domain. Most previous ensemble strategies ignore UDA's dynamic and uncontrollable challenge, facing limited feature representations and performance bottlenecks. To enhance the model, adaptability between domains and reduce the computational cost when deploying the ensemble model, we propose a novel framework, namely Instance aware Model Ensemble With Distillation, IMED, which fuses multiple UDA component models adaptively according to different instances and distills these components into a small model. The core idea of IMED is a dynamic instance aware ensemble strategy, where for each instance, a nonlinear fusion subnetwork is learned that fuses the extracted features and predicted labels of multiple component models. The nonlinear fusion method can help the ensemble model handle dynamically changing factors. After learning a large capacity ensemble model with good adaptability to different changing factors, we leverage the ensemble teacher model to guide the learning of a compact student model by knowledge distillation. Furthermore, we provide the theoretical analysis of the validity of IMED for UDA. Extensive experiments conducted on various UDA benchmark datasets, e.g., Office 31, Office Home, and VisDA 2017, show the superiority of the model based on IMED to the state of the art methods under the comparable computation cost.
Abstract:Semantic segmentation is a popular research topic in computer vision, and many efforts have been made on it with impressive results. In this paper, we intend to search an optimal network structure that can run in real-time for this problem. Towards this goal, we jointly search the depth, channel, dilation rate and feature spatial resolution, which results in a search space consisting of about 2.78*10^324 possible choices. To handle such a large search space, we leverage differential architecture search methods. However, the architecture parameters searched using existing differential methods need to be discretized, which causes the discretization gap between the architecture parameters found by the differential methods and their discretized version as the final solution for the architecture search. Hence, we relieve the problem of discretization gap from the innovative perspective of solution space regularization. Specifically, a novel Solution Space Regularization (SSR) loss is first proposed to effectively encourage the supernet to converge to its discrete one. Then, a new Hierarchical and Progressive Solution Space Shrinking method is presented to further achieve high efficiency of searching. In addition, we theoretically show that the optimization of SSR loss is equivalent to the L_0-norm regularization, which accounts for the improved search-evaluation gap. Comprehensive experiments show that the proposed search scheme can efficiently find an optimal network structure that yields an extremely fast speed (175 FPS) of segmentation with a small model size (1 M) while maintaining comparable accuracy.