Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Picture for Jayashree Kalpathy-Cramer

Jayashree Kalpathy-Cramer

Towards More Efficient Data Valuation in Healthcare Federated Learning using Ensembling


Sep 12, 2022
Sourav Kumar, A. Lakshminarayanan, Ken Chang, Feri Guretno, Ivan Ho Mien, Jayashree Kalpathy-Cramer, Pavitra Krishnaswamy, Praveer Singh

* 3rd MICCAI Workshop on Distributed, Collaborative and Federated Learning 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Estimating Test Performance for AI Medical Devices under Distribution Shift with Conformal Prediction


Jul 12, 2022
Charles Lu, Syed Rakin Ahmed, Praveer Singh, Jayashree Kalpathy-Cramer

* Principles of Distribution Shift (PODS) Workshop at ICML 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Three Applications of Conformal Prediction for Rating Breast Density in Mammography


Jun 23, 2022
Charles Lu, Ken Chang, Praveer Singh, Jayashree Kalpathy-Cramer

* Accepted to Workshop on Distribution-Free Uncertainty Quantification at ICML 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Improving the repeatability of deep learning models with Monte Carlo dropout


Feb 15, 2022
Andreanne Lemay, Katharina Hoebel, Christopher P. Bridge, Brian Befano, Silvia De Sanjosé, Diden Egemen, Ana Cecilia Rodriguez, Mark Schiffman, John Peter Campbell, Jayashree Kalpathy-Cramer

* arXiv admin note: text overlap with arXiv:2111.06754 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Decreasing Annotation Burden of Pairwise Comparisons with Human-in-the-Loop Sorting: Application in Medical Image Artifact Rating


Feb 10, 2022
Ikbeom Jang, Garrison Danley, Ken Chang, Jayashree Kalpathy-Cramer

* 5 pages, 2 figures, NeurIPS Data-Centric AI Workshop 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation -- Analysis of Ranking Metrics and Benchmarking Results


Dec 19, 2021
Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard McKinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Raynaud, Yuanhan Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Linmin Pei, Murat AK, Sarahi Rosas-González, Illyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh McHugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-Andr Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel

* Under submission at MELBA journal 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Monte Carlo dropout increases model repeatability


Nov 12, 2021
Andreanne Lemay, Katharina Hoebel, Christopher P. Bridge, Didem Egemen, Ana Cecilia Rodriguez, Mark Schiffman, John Peter Campbell, Jayashree Kalpathy-Cramer

* Machine Learning for Health (ML4H) at NeurIPS 2021 - Extended Abstract 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Not Color Blind: AI Predicts Racial Identity from Black and White Retinal Vessel Segmentations


Sep 28, 2021
Aaron S. Coyner, Praveer Singh, James M. Brown, Susan Ostmo, R. V. Paul Chan, Michael F. Chiang, Jayashree Kalpathy-Cramer, J. Peter Campbell

* 31 pages, 6 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deploying clinical machine learning? Consider the following...


Sep 14, 2021
Charles Lu, Ken Chang, Praveer Singh, Stuart Pomerantz, Sean Doyle, Sujay Kakarmath, Christopher Bridge, Jayashree Kalpathy-Cramer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Fair Conformal Predictors for Applications in Medical Imaging


Sep 09, 2021
Charles Lu, Andreanne Lemay, Ken Chang, Katharina Hoebel, Jayashree Kalpathy-Cramer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
3
4
>>