Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Katharina Hoebel

Improving the repeatability of deep learning models with Monte Carlo dropout


Feb 15, 2022
Andreanne Lemay, Katharina Hoebel, Christopher P. Bridge, Brian Befano, Silvia De Sanjosé, Diden Egemen, Ana Cecilia Rodriguez, Mark Schiffman, John Peter Campbell, Jayashree Kalpathy-Cramer

* arXiv admin note: text overlap with arXiv:2111.06754 

  Access Paper or Ask Questions

QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation -- Analysis of Ranking Metrics and Benchmarking Results


Dec 19, 2021
Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard McKinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Raynaud, Yuanhan Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Linmin Pei, Murat AK, Sarahi Rosas-González, Illyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh McHugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-Andr Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel

* Under submission at MELBA journal 

  Access Paper or Ask Questions

Monte Carlo dropout increases model repeatability


Nov 12, 2021
Andreanne Lemay, Katharina Hoebel, Christopher P. Bridge, Didem Egemen, Ana Cecilia Rodriguez, Mark Schiffman, John Peter Campbell, Jayashree Kalpathy-Cramer

* Machine Learning for Health (ML4H) at NeurIPS 2021 - Extended Abstract 

  Access Paper or Ask Questions

Fair Conformal Predictors for Applications in Medical Imaging


Sep 09, 2021
Charles Lu, Andreanne Lemay, Ken Chang, Katharina Hoebel, Jayashree Kalpathy-Cramer


  Access Paper or Ask Questions

Evaluating subgroup disparity using epistemic uncertainty in mammography


Jul 15, 2021
Charles Lu, Andreanne Lemay, Katharina Hoebel, Jayashree Kalpathy-Cramer

* Accepted to the Interpretable Machine Learning in Healthcare workshop at the ICML 2021 conference 

  Access Paper or Ask Questions

Addressing catastrophic forgetting for medical domain expansion


Mar 24, 2021
Sharut Gupta, Praveer Singh, Ken Chang, Liangqiong Qu, Mehak Aggarwal, Nishanth Arun, Ashwin Vaswani, Shruti Raghavan, Vibha Agarwal, Mishka Gidwani, Katharina Hoebel, Jay Patel, Charles Lu, Christopher P. Bridge, Daniel L. Rubin, Jayashree Kalpathy-Cramer

* First three authors contributed equally 

  Access Paper or Ask Questions

The unreasonable effectiveness of Batch-Norm statistics in addressing catastrophic forgetting across medical institutions


Nov 16, 2020
Sharut Gupta, Praveer Singh, Ken Chang, Mehak Aggarwal, Nishanth Arun, Liangqiong Qu, Katharina Hoebel, Jay Patel, Mishka Gidwani, Ashwin Vaswani, Daniel L Rubin, Jayashree Kalpathy-Cramer

* Accepted as oral presentation in Machine Learning for Health (ML4H) at NeurIPS 2020 - Extended Abstract ; 6 pages and 4 figures 

  Access Paper or Ask Questions

Assessing the (Un)Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging


Aug 06, 2020
Nishanth Arun, Nathan Gaw, Praveer Singh, Ken Chang, Mehak Aggarwal, Bryan Chen, Katharina Hoebel, Sharut Gupta, Jay Patel, Mishka Gidwani, Julius Adebayo, Matthew D. Li, Jayashree Kalpathy-Cramer

* Submitted to Nature Machine Intelligence. First four authors contributed equally to this work 

  Access Paper or Ask Questions

Give me (un)certainty -- An exploration of parameters that affect segmentation uncertainty


Nov 14, 2019
Katharina Hoebel, Ken Chang, Jay Patel, Praveer Singh, Jayashree Kalpathy-Cramer

* Machine Learning for Health (ML4H) at NeurIPS 2019 - Extended Abstract 

  Access Paper or Ask Questions

DeepNeuro: an open-source deep learning toolbox for neuroimaging


Aug 14, 2018
Andrew Beers, James Brown, Ken Chang, Katharina Hoebel, Elizabeth Gerstner, Bruce Rosen, Jayashree Kalpathy-Cramer


  Access Paper or Ask Questions