Alert button
Picture for Keyvan Farahani

Keyvan Farahani

Alert button

A multi-institutional pediatric dataset of clinical radiology MRIs by the Children's Brain Tumor Network

Oct 02, 2023
Ariana M. Familiar, Anahita Fathi Kazerooni, Hannah Anderson, Aliaksandr Lubneuski, Karthik Viswanathan, Rocky Breslow, Nastaran Khalili, Sina Bagheri, Debanjan Haldar, Meen Chul Kim, Sherjeel Arif, Rachel Madhogarhia, Thinh Q. Nguyen, Elizabeth A. Frenkel, Zeinab Helili, Jessica Harrison, Keyvan Farahani, Marius George Linguraru, Ulas Bagci, Yury Velichko, Jeffrey Stevens, Sarah Leary, Robert M. Lober, Stephani Campion, Amy A. Smith, Denise Morinigo, Brian Rood, Kimberly Diamond, Ian F. Pollack, Melissa Williams, Arastoo Vossough, Jeffrey B. Ware, Sabine Mueller, Phillip B. Storm, Allison P. Heath, Angela J. Waanders, Jena V. Lilly, Jennifer L. Mason, Adam C. Resnick, Ali Nabavizadeh

Pediatric brain and spinal cancers remain the leading cause of cancer-related death in children. Advancements in clinical decision-support in pediatric neuro-oncology utilizing the wealth of radiology imaging data collected through standard care, however, has significantly lagged other domains. Such data is ripe for use with predictive analytics such as artificial intelligence (AI) methods, which require large datasets. To address this unmet need, we provide a multi-institutional, large-scale pediatric dataset of 23,101 multi-parametric MRI exams acquired through routine care for 1,526 brain tumor patients, as part of the Children's Brain Tumor Network. This includes longitudinal MRIs across various cancer diagnoses, with associated patient-level clinical information, digital pathology slides, as well as tissue genotype and omics data. To facilitate downstream analysis, treatment-na\"ive images for 370 subjects were processed and released through the NCI Childhood Cancer Data Initiative via the Cancer Data Service. Through ongoing efforts to continuously build these imaging repositories, our aim is to accelerate discovery and translational AI models with real-world data, to ultimately empower precision medicine for children.

Viaarxiv icon

The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI

Jun 01, 2023
Ahmed W. Moawad, Anastasia Janas, Ujjwal Baid, Divya Ramakrishnan, Leon Jekel, Kiril Krantchev, Harrison Moy, Rachit Saluja, Klara Osenberg, Klara Wilms, Manpreet Kaur, Arman Avesta, Gabriel Cassinelli Pedersen, Nazanin Maleki, Mahdi Salimi, Sarah Merkaj, Marc von Reppert, Niklas Tillmans, Jan Lost, Khaled Bousabarah, Wolfgang Holler, MingDe Lin, Malte Westerhoff, Ryan Maresca, Katherine E. Link, Nourel hoda Tahon, Daniel Marcus, Aristeidis Sotiras, Pamela LaMontagne, Strajit Chakrabarty, Oleg Teytelboym, Ayda Youssef, Ayaman Nada, Yuri S. Velichko, Nicolo Gennaro, Connectome Students, Group of Annotators, Justin Cramer, Derek R. Johnson, Benjamin Y. M. Kwan, Boyan Petrovic, Satya N. Patro, Lei Wu, Tiffany So, Gerry Thompson, Anthony Kam, Gloria Guzman Perez-Carrillo, Neil Lall, Group of Approvers, Jake Albrecht, Udunna Anazodo, Marius George Lingaru, Bjoern H Menze, Benedikt Wiestler, Maruf Adewole, Syed Muhammad Anwar, Dominic Labella, Hongwei Bran Li, Juan Eugenio Iglesias, Keyvan Farahani, James Eddy, Timothy Bergquist, Verena Chung, Russel Takeshi Shinohara, Farouk Dako, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Koen Van Leemput, Marie Piraud, Ivan Ezhov, Elaine Johanson, Zeke Meier, Ariana Familiar, Anahita Fathi Kazerooni, Florian Kofler, Evan Calabrese, Sanjay Aneja, Veronica Chiang, Ichiro Ikuta, Umber Shafique, Fatima Memon, Gian Marco Conte, Spyridon Bakas, Jeffrey Rudie, Mariam Aboian

Figure 1 for The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI
Figure 2 for The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI
Figure 3 for The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI
Figure 4 for The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI

Clinical monitoring of metastatic disease to the brain can be a laborious and time-consuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.

Viaarxiv icon

The Brain Tumor Segmentation (BraTS) Challenge 2023: Glioma Segmentation in Sub-Saharan Africa Patient Population (BraTS-Africa)

May 30, 2023
Maruf Adewole, Jeffrey D. Rudie, Anu Gbadamosi, Oluyemisi Toyobo, Confidence Raymond, Dong Zhang, Olubukola Omidiji, Rachel Akinola, Mohammad Abba Suwaid, Adaobi Emegoakor, Nancy Ojo, Kenneth Aguh, Chinasa Kalaiwo, Gabriel Babatunde, Afolabi Ogunleye, Yewande Gbadamosi, Kator Iorpagher, Evan Calabrese, Mariam Aboian, Marius Linguraru, Jake Albrecht, Benedikt Wiestler, Florian Kofler, Anastasia Janas, Dominic LaBella, Anahita Fathi Kzerooni, Hongwei Bran Li, Juan Eugenio Iglesias, Keyvan Farahani, James Eddy, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Ariana Familiar, Koen Van Leemput, Christina Bukas, Maire Piraud, Gian-Marco Conte, Elaine Johansson, Zeke Meier, Bjoern H Menze, Ujjwal Baid, Spyridon Bakas, Farouk Dako, Abiodun Fatade, Udunna C Anazodo

Figure 1 for The Brain Tumor Segmentation (BraTS) Challenge 2023: Glioma Segmentation in Sub-Saharan Africa Patient Population (BraTS-Africa)
Figure 2 for The Brain Tumor Segmentation (BraTS) Challenge 2023: Glioma Segmentation in Sub-Saharan Africa Patient Population (BraTS-Africa)

Gliomas are the most common type of primary brain tumors. Although gliomas are relatively rare, they are among the deadliest types of cancer, with a survival rate of less than 2 years after diagnosis. Gliomas are challenging to diagnose, hard to treat and inherently resistant to conventional therapy. Years of extensive research to improve diagnosis and treatment of gliomas have decreased mortality rates across the Global North, while chances of survival among individuals in low- and middle-income countries (LMICs) remain unchanged and are significantly worse in Sub-Saharan Africa (SSA) populations. Long-term survival with glioma is associated with the identification of appropriate pathological features on brain MRI and confirmation by histopathology. Since 2012, the Brain Tumor Segmentation (BraTS) Challenge have evaluated state-of-the-art machine learning methods to detect, characterize, and classify gliomas. However, it is unclear if the state-of-the-art methods can be widely implemented in SSA given the extensive use of lower-quality MRI technology, which produces poor image contrast and resolution and more importantly, the propensity for late presentation of disease at advanced stages as well as the unique characteristics of gliomas in SSA (i.e., suspected higher rates of gliomatosis cerebri). Thus, the BraTS-Africa Challenge provides a unique opportunity to include brain MRI glioma cases from SSA in global efforts through the BraTS Challenge to develop and evaluate computer-aided-diagnostic (CAD) methods for the detection and characterization of glioma in resource-limited settings, where the potential for CAD tools to transform healthcare are more likely.

* arXiv admin note: text overlap with arXiv:2107.02314 
Viaarxiv icon

The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)

May 26, 2023
Anahita Fathi Kazerooni, Nastaran Khalili, Xinyang Liu, Debanjan Haldar, Zhifan Jiang, Syed Muhammed Anwar, Jake Albrecht, Maruf Adewole, Udunna Anazodo, Hannah Anderson, Sina Bagheri, Ujjwal Baid, Timothy Bergquist, Evan Calabrese, Verena Chung, Gian-Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Ariana Familiar, Keyvan Farahani, Shuvanjan Haldar, Juan Eugenio Iglesias, Anastasia Janas, Elaine Johansen, Florian Kofler, Dominic LaBella, Koen Van Leemput, Hongwei Bran Li, Nazanin Maleki, Zeke Meier, Bjoern Menze, Ahmed W Moawad, Marie Piraud, Tina Poussaint, Zachary Reitman, Jeffrey D Rudie, Ibraheem Salman Shaikh, Russel Taki Shinohara, Wenxin Tu, Karthik Viswanathan, Chunhao Wang, Jeffrey B Ware, Benedikt Wiestler, Walter Wiggins, Anna Zapaishchykova, Mariam Aboian, Miriam Bornhorst, Peter de Blank, Michelle Deutsch, Maryam Fouladi, Lindsey Hoffman, Benjamin Kann, Margot Lazow, Leonie Mikael, Ali Nabavizadeh, Roger Packer, Adam Resnick, Brian Rood, Arastoo Vossough, Spyridon Bakas, Marius George Linguraru

Figure 1 for The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)

Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20\%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.

Viaarxiv icon

The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn)

May 20, 2023
Hongwei Bran Li, Syed Muhammad Anwar, Gian Marco Conte, Florian Kofler, Koen van Leemput, Marie Piraud, Ivan Ezhov, Felix Meissen, Maruf Adewole, Anastasia Janas, Anahita Fathi Kazerooni, Dominic LaBella, Ahmed W. Moawad, Keyvan Farahani, James Eddy, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Farouk Dako, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Ariana Familiar, Elaine Johanson, Zeke Meier, Christos Davatzikos, John Freymann, Justin Kirby, Michel Bilello, Hassan M. Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Rivka R. Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc André Weber, Abhishek Mahajan, Suyash Mohan, John Mongan, Christopher Hess, Soonmee Cha, Javier Villanueva, Meyer Errol Colak, Priscila Crivellaro, Andras Jakab, Jake Albrecht, Udunna Anazodo, Mariam Aboian, Thomas Yu, Verena Chung, Timothy Bergquist, James Eddy, Jake Albrecht, Ujjwal Baid, Spyridon Bakas, Marius George Linguraru, Bjoern Menze, Juan Eugenio Iglesias, Benedikt Wiestler

Figure 1 for The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn)

Automated brain tumor segmentation methods are well established, reaching performance levels with clear clinical utility. Most algorithms require four input magnetic resonance imaging (MRI) modalities, typically T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some of these sequences are often missing in clinical practice, e.g., because of time constraints and/or image artifacts (such as patient motion). Therefore, substituting missing modalities to recover segmentation performance in these scenarios is highly desirable and necessary for the more widespread adoption of such algorithms in clinical routine. In this work, we report the set-up of the Brain MR Image Synthesis Benchmark (BraSyn), organized in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The objective of the challenge is to benchmark image synthesis methods that realistically synthesize missing MRI modalities given multiple available images to facilitate automated brain tumor segmentation pipelines. The image dataset is multi-modal and diverse, created in collaboration with various hospitals and research institutions.

* Technical report of BraSyn 
Viaarxiv icon

The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting

May 15, 2023
Florian Kofler, Felix Meissen, Felix Steinbauer, Robert Graf, Eva Oswald, Ezequiel de da Rosa, Hongwei Bran Li, Ujjwal Baid, Florian Hoelzl, Oezguen Turgut, Izabela Horvath, Diana Waldmannstetter, Christina Bukas, Maruf Adewole, Syed Muhammad Anwar, Anastasia Janas, Anahita Fathi Kazerooni, Dominic LaBella, Ahmed W Moawad, Keyvan Farahani, James Eddy, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Farouk Dako, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Ariana Familiar, Gian-Marco Conte, Elaine Johanson, Zeke Meier, Christos Davatzikos, John Freymann, Justin Kirby, Michel Bilello, Hassan M Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Rivka R Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-André Weber, Abhishek Mahajan, Suyash Mohan, John Mongan, Christopher Hess, Soonmee Cha, Javier Villanueva-Meyer, Errol Colak, Priscila Crivellaro, Andras Jakab, Jake Albrecht, Udunna Anazodo, Mariam Aboian, Juan Eugenio Iglesias, Koen Van Leemput, Spyridon Bakas, Daniel Rueckert, Benedikt Wiestler, Ivan Ezhov, Marie Piraud, Bjoern Menze

Figure 1 for The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting

A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with a scan that is already pathological. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantees for images featuring lesions. Examples include but are not limited to algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction. To solve this dilemma, we introduce the BraTS 2023 inpainting challenge. Here, the participants' task is to explore inpainting techniques to synthesize healthy brain scans from lesioned ones. The following manuscript contains the task formulation, dataset, and submission procedure. Later it will be updated to summarize the findings of the challenge. The challenge is organized as part of the BraTS 2023 challenge hosted at the MICCAI 2023 conference in Vancouver, Canada.

* 5 pages, 1 figure 
Viaarxiv icon

The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma

May 12, 2023
Dominic LaBella, Maruf Adewole, Michelle Alonso-Basanta, Talissa Altes, Syed Muhammad Anwar, Ujjwal Baid, Timothy Bergquist, Radhika Bhalerao, Sully Chen, Verena Chung, Gian-Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Devon Godfrey, Fathi Hilal, Ariana Familiar, Keyvan Farahani, Juan Eugenio Iglesias, Zhifan Jiang, Elaine Johanson, Anahita Fathi Kazerooni, Collin Kent, John Kirkpatrick, Florian Kofler, Koen Van Leemput, Hongwei Bran Li, Xinyang Liu, Aria Mahtabfar, Shan McBurney-Lin, Ryan McLean, Zeke Meier, Ahmed W Moawad, John Mongan, Pierre Nedelec, Maxence Pajot, Marie Piraud, Arif Rashid, Zachary Reitman, Russell Takeshi Shinohara, Yury Velichko, Chunhao Wang, Pranav Warman, Walter Wiggins, Mariam Aboian, Jake Albrecht, Udunna Anazodo, Spyridon Bakas, Adam Flanders, Anastasia Janas, Goldey Khanna, Marius George Linguraru, Bjoern Menze, Ayman Nada, Andreas M Rauschecker, Jeff Rudie, Nourel Hoda Tahon, Javier Villanueva-Meyer, Benedikt Wiestler, Evan Calabrese

Figure 1 for The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma
Figure 2 for The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma
Figure 3 for The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma
Figure 4 for The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma

Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.

Viaarxiv icon

Report of the Medical Image De-Identification (MIDI) Task Group -- Best Practices and Recommendations

Apr 01, 2023
David A. Clunie, Adam Flanders, Adam Taylor, Brad Erickson, Brian Bialecki, David Brundage, David Gutman, Fred Prior, J Anthony Seibert, John Perry, Judy Wawira Gichoya, Justin Kirby, Katherine Andriole, Luke Geneslaw, Steve Moore, TJ Fitzgerald, Wyatt Tellis, Ying Xiao, Keyvan Farahani

This report addresses the technical aspects of de-identification of medical images of human subjects and biospecimens, such that re-identification risk of ethical, moral, and legal concern is sufficiently reduced to allow unrestricted public sharing for any purpose, regardless of the jurisdiction of the source and distribution sites. All medical images, regardless of the mode of acquisition, are considered, though the primary emphasis is on those with accompanying data elements, especially those encoded in formats in which the data elements are embedded, particularly Digital Imaging and Communications in Medicine (DICOM). These images include image-like objects such as Segmentations, Parametric Maps, and Radiotherapy (RT) Dose objects. The scope also includes related non-image objects, such as RT Structure Sets, Plans and Dose Volume Histograms, Structured Reports, and Presentation States. Only de-identification of publicly released data is considered, and alternative approaches to privacy preservation, such as federated learning for artificial intelligence (AI) model development, are out of scope, as are issues of privacy leakage from AI model sharing. Only technical issues of public sharing are addressed.

* 131 pages 
Viaarxiv icon

Understanding metric-related pitfalls in image analysis validation

Feb 09, 2023
Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Büttner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben Van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein

Figure 1 for Understanding metric-related pitfalls in image analysis validation
Figure 2 for Understanding metric-related pitfalls in image analysis validation
Figure 3 for Understanding metric-related pitfalls in image analysis validation
Figure 4 for Understanding metric-related pitfalls in image analysis validation

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Viaarxiv icon