This study explored the utilities of rationales generated by GPT-4.1 and GPT-5 in automated scoring using Prompt 6 essays from the 2012 Kaggle ASAP data. Essay-based scoring was compared with rationale-based scoring. The study found in general essay-based scoring performed better than rationale-based scoring with higher Quadratic Weighted Kappa (QWK). However, rationale-based scoring led to higher scoring accuracy in terms of F1 scores for score 0 which had less representation due to class imbalance issues. The ensemble modeling of essay-based scoring models increased the scoring accuracy at both specific score levels and across all score levels. The ensemble modeling of essay-based scoring and each of the rationale-based scoring performed about the same. Further ensemble of essay-based scoring and both rationale-based scoring yielded the best scoring accuracy with QWK of 0.870 compared with 0.848 reported in literature.