Princeton University
Abstract:Long context may impose challenges for encoder-only language models in text processing, specifically for automated scoring of essays. This study trained several commonly used encoder-based language models for automated scoring of long essays. The performance of these trained models was evaluated and compared with the ensemble models built upon the base language models with a token limit of 512?. The experimented models include BERT-based models (BERT, RoBERTa, DistilBERT, and DeBERTa), ensemble models integrating embeddings from multiple encoder models, and ensemble models of feature-based supervised machine learning models, including Gradient-Boosted Decision Trees, eXtreme Gradient Boosting, and Light Gradient Boosting Machine. We trained, validated, and tested each model on a dataset of 17,307 essays, with an 80%/10%/10% split, and evaluated model performance using Quadratic Weighted Kappa. This study revealed that an ensemble-of-embeddings model that combines multiple pre-trained language model representations with gradient-boosting classifier as the ensemble model significantly outperforms individual language models at scoring long essays.
Abstract:This study explored the utilities of rationales generated by GPT-4.1 and GPT-5 in automated scoring using Prompt 6 essays from the 2012 Kaggle ASAP data. Essay-based scoring was compared with rationale-based scoring. The study found in general essay-based scoring performed better than rationale-based scoring with higher Quadratic Weighted Kappa (QWK). However, rationale-based scoring led to higher scoring accuracy in terms of F1 scores for score 0 which had less representation due to class imbalance issues. The ensemble modeling of essay-based scoring models increased the scoring accuracy at both specific score levels and across all score levels. The ensemble modeling of essay-based scoring and each of the rationale-based scoring performed about the same. Further ensemble of essay-based scoring and both rationale-based scoring yielded the best scoring accuracy with QWK of 0.870 compared with 0.848 reported in literature.
Abstract:BERT and its variants are extensively explored for automated scoring. However, a limit of 512 tokens for these encoder-based models showed the deficiency in automated scoring of long essays. Thus, this research explores generative language models for automated scoring of long essays via summarization and prompting. The results revealed great improvement of scoring accuracy with QWK increased from 0.822 to 0.8878 for the Learning Agency Lab Automated Essay Scoring 2.0 dataset.