Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
Abstract:Advancements in multimodal learning, particularly in video understanding and generation, require high-quality video-text datasets for improved model performance. Vript addresses this issue with a meticulously annotated corpus of 12K high-resolution videos, offering detailed, dense, and script-like captions for over 420K clips. Each clip has a caption of ~145 words, which is over 10x longer than most video-text datasets. Unlike captions only documenting static content in previous datasets, we enhance video captioning to video scripting by documenting not just the content, but also the camera operations, which include the shot types (medium shot, close-up, etc) and camera movements (panning, tilting, etc). By utilizing the Vript, we explore three training paradigms of aligning more text with the video modality rather than clip-caption pairs. This results in Vriptor, a top-performing video captioning model among open-source models, comparable to GPT-4V in performance. Vriptor is also a powerful model capable of end-to-end generation of dense and detailed captions for long videos. Moreover, we introduce Vript-Hard, a benchmark consisting of three video understanding tasks that are more challenging than existing benchmarks: Vript-HAL is the first benchmark evaluating action and object hallucinations in video LLMs, Vript-RR combines reasoning with retrieval resolving question ambiguity in long-video QAs, and Vript-ERO is a new task to evaluate the temporal understanding of events in long videos rather than actions in short videos in previous works. All code, models, and datasets are available in https://github.com/mutonix/Vript.
Abstract:The burgeoning size of Large Language Models (LLMs) has led to enhanced capabilities in generating responses, albeit at the expense of increased inference times and elevated resource demands. Existing methods of acceleration, predominantly hinged on knowledge distillation, generally necessitate fine-tuning of considerably large models, such as Llama-7B, posing a challenge for average users. Furthermore, present techniques for expediting inference and reducing costs operate independently. To address these issues, we introduce a novel and intuitive Guidance-based Knowledge Transfer (GKT) framework. This approach leverages a larger LLM as a ''teacher'' to create guidance prompts, paired with a smaller ''student'' model to finalize responses. Remarkably, GKT requires no fine-tuning and doesn't necessitate the teacher and student models to have the same vocabulary, allowing for extensive batch generation to accelerate the process while ensuring user customization. GKT can be seamlessly integrated into cloud-edge collaboration architectures, and is versatile enough for plug-and-play application across various models. It excels in both efficiency and affordability, epitomizing a ''cheap and cheerful'' solution. GKT achieves a maximum accuracy improvement of 14.18%, along with a 10.72 times speed-up on GSM8K and an accuracy improvement of 14.00 % along with a 7.73 times speed-up in CSQA. When utilizing ChatGPT as teacher model and Llama2-70B as the student model, we can achieve 95.00% of ChatGPT's performance at 52% of the cost. The results highlight substantial enhancements in accuracy and processing speed on the GSM8K and CSQA datasets, surpassing the performance of using either the student or teacher models in isolation.
Abstract:Drama is a form of storytelling inspired by human creativity, proceeding with a predefined storyline, carrying emotions and thoughts. This paper introduces \emph{LLM-based interactive drama}, which endows traditional drama with an unprecedented immersion, where a person is allowed to walk into it and interact with the characters and scenes. We define this new artistic genre by 6 essential elements-plot, character, thought, diction, spectacle and interaction-and study the entire pipeline to forge a backbone \emph{drama LLM} to drive the playing process, which is challenged by limited drama resources, uncontrollable narrative development, and complicated instruction following. We propose \emph{Narrative Chain} to offer finer control over the narrative progression during interaction with players; \emph{Auto-Drama} to synthesize drama scripts given arbitrary stories; \emph{Sparse Instruction Tuning} to allow the model to follow sophisticated instructions. We manually craft 3 scripts, \emph{Detective Conan}, \emph{Harry Potter}, \emph{Romeo and Juliet}, and design a 5-dimension principle to evaluate the drama LLM comprehensively.
Abstract:As Large Language Models (LLMs) become increasingly prevalent in various domains, their ability to process inputs of any length and maintain a degree of memory becomes essential. However, the one-off input of overly long texts is limited, as studies have shown that when input lengths exceed the LLMs' pre-trained text length, there is a dramatic decline in text generation capabilities. Moreover, simply extending the length of pre-training texts is impractical due to the difficulty in obtaining long text data and the substantial memory consumption costs this would entail for LLMs. Recent efforts have employed streaming inputs to alleviate the pressure of excessively long text inputs, but this approach can significantly impair the model's long-term memory capabilities. Motivated by this challenge, we introduce Streaming Infinite Retentive LLM (SirLLM), which allows LLMs to maintain longer memory during infinite-length dialogues without the need for fine-tuning. SirLLM utilizes the Token Entropy metric and a memory decay mechanism to filter key phrases, endowing LLMs with both long-lasting and flexible memory. We designed three distinct tasks and constructed three datasets to measure the effectiveness of SirLLM from various angles: (1) DailyDialog; (2) Grocery Shopping; (3) Rock-Paper-Scissors. Our experimental results robustly demonstrate that SirLLM can achieve stable and significant improvements across different LLMs and tasks, compellingly proving its effectiveness. When having a coversation, "A sir could forget himself," but SirLLM never does! Our code is publicly available at https://github.com/Zoeyyao27/SirLLM
Abstract:Large Language Models (LLMs) have shown remarkable comprehension abilities but face challenges in GPU memory usage during inference, hindering their scalability for real-time applications like chatbots. To accelerate inference, we store computed keys and values (KV cache) in the GPU memory. Existing methods study the KV cache compression to reduce memory by pruning the pre-computed KV cache. However, they neglect the inter-layer dependency between layers and huge memory consumption in pre-computation. To explore these deficiencies, we find that the number of crucial keys and values that influence future generations decreases layer by layer and we can extract them by the consistency in attention weights. Based on the findings, we propose PyramidInfer, a method that compresses the KV cache by layer-wise retaining crucial context. PyramidInfer saves significant memory by computing fewer keys and values without sacrificing performance. Experimental results show PyramidInfer improves 2.2x throughput compared to Accelerate with over 54% GPU memory reduction in KV cache.
Abstract:E-health allows smart devices and medical institutions to collaboratively collect patients' data, which is trained by Artificial Intelligence (AI) technologies to help doctors make diagnosis. By allowing multiple devices to train models collaboratively, federated learning is a promising solution to address the communication and privacy issues in e-health. However, applying federated learning in e-health faces many challenges. First, medical data is both horizontally and vertically partitioned. Since single Horizontal Federated Learning (HFL) or Vertical Federated Learning (VFL) techniques cannot deal with both types of data partitioning, directly applying them may consume excessive communication cost due to transmitting a part of raw data when requiring high modeling accuracy. Second, a naive combination of HFL and VFL has limitations including low training efficiency, unsound convergence analysis, and lack of parameter tuning strategies. In this paper, we provide a thorough study on an effective integration of HFL and VFL, to achieve communication efficiency and overcome the above limitations when data is both horizontally and vertically partitioned. Specifically, we propose a hybrid federated learning framework with one intermediate result exchange and two aggregation phases. Based on this framework, we develop a Hybrid Stochastic Gradient Descent (HSGD) algorithm to train models. Then, we theoretically analyze the convergence upper bound of the proposed algorithm. Using the convergence results, we design adaptive strategies to adjust the training parameters and shrink the size of transmitted data. Experimental results validate that the proposed HSGD algorithm can achieve the desired accuracy while reducing communication cost, and they also verify the effectiveness of the adaptive strategies.
Abstract:The Instruction-Driven Game Engine (IDGE) project aims to democratize game development by enabling a large language model (LLM) to follow free-form game rules and autonomously generate game-play processes. The IDGE allows users to create games by issuing simple natural language instructions, which significantly lowers the barrier for game development. We approach the learning process for IDGEs as a Next State Prediction task, wherein the model autoregressively predicts in-game states given player actions. It is a challenging task because the computation of in-game states must be precise; otherwise, slight errors could disrupt the game-play. To address this, we train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios. Our initial progress lies in developing an IDGE for Poker, a universally cherished card game. The engine we've designed not only supports a wide range of poker variants but also allows for high customization of rules through natural language inputs. Furthermore, it also favors rapid prototyping of new games from minimal samples, proposing an innovative paradigm in game development that relies on minimal prompt and data engineering. This work lays the groundwork for future advancements in instruction-driven game creation, potentially transforming how games are designed and played.
Abstract:Large language models have manifested remarkable capabilities by leveraging chain-of-thought (CoT) reasoning techniques to solve intricate questions through step-by-step reasoning chains. Despite its success, the efficacy of such reasoning is inherently contingent upon the quality of CoT. However, flawless CoT reasoning cannot be guaranteed due to the presence of indecomposable questions and the potential for erroneous reasoning chains, particularly in the case of small-scale language models. To tackle this challenge, we propose a novel approach called the selective filtering reasoner (SelF-Reasoner) that assesses the entailment relationship between the question and the candidate reasoning chain. Then, we proceed with CoT reasoning when the reasoning chain demonstrates confidence; otherwise, we opt to predict the answer directly. SelF-Reasoner improves the fine-tuned T5 baseline consistently over the ScienceQA, ECQA, and LastLetter tasks. Code is available at \texttt{https://github.com/LibroWu/SelF-Reasoner}.
Abstract:Large Language Models (LLMs), benefiting from the auto-regressive modelling approach performed on massive unannotated texts corpora, demonstrates powerful perceptual and reasoning capabilities. However, as for extending auto-regressive modelling to multi-modal scenarios to build Large Multi-modal Models (LMMs), there lies a great difficulty that the image information is processed in the LMM as continuous visual embeddings, which cannot obtain discrete supervised labels for classification. In this paper, we successfully perform multi-modal auto-regressive modeling with a unified objective for the first time. Specifically, we propose the concept of visual words, which maps the visual features to probability distributions over LLM's vocabulary, providing supervision information for visual modelling. We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information. Experimental results and ablation studies on 5 VQA tasks and 4 benchmark toolkits validate the powerful performance of our proposed approach.
Abstract:Webpage entity extraction is a fundamental natural language processing task in both research and applications. Nowadays, the majority of webpage entity extraction models are trained on structured datasets which strive to retain textual content and its structure information. However, existing datasets all overlook the rich hypertext features (e.g., font color, font size) which show their effectiveness in previous works. To this end, we first collect a \textbf{H}ypertext \textbf{E}ntity \textbf{E}xtraction \textbf{D}ataset (\textit{HEED}) from the e-commerce domains, scraping both the text and the corresponding explicit hypertext features with high-quality manual entity annotations. Furthermore, we present the \textbf{Mo}E-based \textbf{E}ntity \textbf{E}xtraction \textbf{F}ramework (\textit{MoEEF}), which efficiently integrates multiple features to enhance model performance by Mixture of Experts and outperforms strong baselines, including the state-of-the-art small-scale models and GPT-3.5-turbo. Moreover, the effectiveness of hypertext features in \textit{HEED} and several model components in \textit{MoEEF} are analyzed.