Abstract:Equivariance to permutations and rigid motions is an important inductive bias for various 3D learning problems. Recently it has been shown that the equivariant Tensor Field Network architecture is universal -- it can approximate any equivariant function. In this paper we suggest a much simpler architecture, prove that it enjoys the same universality guarantees and evaluate its performance on Modelnet40. The code to reproduce our experiments is available at \url{https://github.com/simpleinvariance/UniversalNetwork}
Abstract:In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks. Joint training reduces computation costs and improves data efficiency; however, since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts. A common method for alleviating this issue is to combine per-task gradients into a joint update direction using a particular heuristic. In this paper, we propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update. Under certain assumptions, the bargaining problem has a unique solution, known as the Nash Bargaining Solution, which we propose to use as a principled approach to multi-task learning. We describe a new MTL optimization procedure, Nash-MTL, and derive theoretical guarantees for its convergence. Empirically, we show that Nash-MTL achieves state-of-the-art results on multiple MTL benchmarks in various domains.
Abstract:Standard Federated Learning (FL) techniques are limited to clients with identical network architectures. This restricts potential use-cases like cross-platform training or inter-organizational collaboration when both data privacy and architectural proprietary are required. We propose a new FL framework that accommodates heterogeneous client architecture by adopting a graph hypernetwork for parameter sharing. A property of the graph hyper network is that it can adapt to various computational graphs, thereby allowing meaningful parameter sharing across models. Unlike existing solutions, our framework does not limit the clients to share the same architecture type, makes no use of external data and does not require clients to disclose their model architecture. Compared with distillation-based and non-graph hypernetwork baselines, our method performs notably better on standard benchmarks. We additionally show encouraging generalization performance to unseen architectures.
Abstract:In recent years, algorithms and neural architectures based on the Weisfeiler-Leman algorithm, a well-known heuristic for the graph isomorphism problem, emerged as a powerful tool for machine learning with graphs and relational data. Here, we give a comprehensive overview of the algorithm's use in a machine learning setting, focusing on the supervised regime. We discuss the theoretical background, show how to use it for supervised graph- and node representation learning, discuss recent extensions, and outline the algorithm's connection to (permutation-)equivariant neural architectures. Moreover, we give an overview of current applications and future directions to stimulate further research.
Abstract:Message-passing neural networks (MPNNs) are the leading architecture for deep learning on graph-structured data, in large part due to their simplicity and scalability. Unfortunately, it was shown that these architectures are limited in their expressive power. This paper proposes a novel framework called Equivariant Subgraph Aggregation Networks (ESAN) to address this issue. Our main observation is that while two graphs may not be distinguishable by an MPNN, they often contain distinguishable subgraphs. Thus, we propose to represent each graph as a set of subgraphs derived by some predefined policy, and to process it using a suitable equivariant architecture. We develop novel variants of the 1-dimensional Weisfeiler-Leman (1-WL) test for graph isomorphism, and prove lower bounds on the expressiveness of ESAN in terms of these new WL variants. We further prove that our approach increases the expressive power of both MPNNs and more expressive architectures. Moreover, we provide theoretical results that describe how design choices such as the subgraph selection policy and equivariant neural architecture affect our architecture's expressive power. To deal with the increased computational cost, we propose a subgraph sampling scheme, which can be viewed as a stochastic version of our framework. A comprehensive set of experiments on real and synthetic datasets demonstrates that our framework improves the expressive power and overall performance of popular GNN architectures.
Abstract:Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained blindly? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image from those domains. We show that through natural language prompts and a few minutes of training, our method can adapt a generator across a multitude of domains characterized by diverse styles and shapes. Notably, many of these modifications would be difficult or outright impossible to reach with existing methods. We conduct an extensive set of experiments and comparisons across a wide range of domains. These demonstrate the effectiveness of our approach and show that our shifted models maintain the latent-space properties that make generative models appealing for downstream tasks.
Abstract:Existing deep methods produce highly accurate 3D reconstructions in stereo and multiview stereo settings, i.e., when cameras are both internally and externally calibrated. Nevertheless, the challenge of simultaneous recovery of camera poses and 3D scene structure in multiview settings with deep networks is still outstanding. Inspired by projective factorization for Structure from Motion (SFM) and by deep matrix completion techniques, we propose a neural network architecture that, given a set of point tracks in multiple images of a static scene, recovers both the camera parameters and a (sparse) scene structure by minimizing an unsupervised reprojection loss. Our network architecture is designed to respect the structure of the problem: the sought output is equivariant to permutations of both cameras and scene points. Notably, our method does not require initialization of camera parameters or 3D point locations. We test our architecture in two setups: (1) single scene reconstruction and (2) learning from multiple scenes. Our experiments, conducted on a variety of datasets in both internally calibrated and uncalibrated settings, indicate that our method accurately recovers pose and structure, on par with classical state of the art methods. Additionally, we show that a pre-trained network can be used to reconstruct novel scenes using inexpensive fine-tuning with no loss of accuracy.
Abstract:We consider the problem of monitoring and controlling a partially-observed dynamic process that spreads over a graph. This problem naturally arises in contexts such as scheduling virus tests or quarantining individuals to curb a spreading epidemic; detecting fake news spreading on online networks by manually inspecting posted articles; and targeted marketing where the objective is to encourage the spread of a product. Curbing the spread and constraining the fraction of infected population becomes challenging when only a fraction of the population can be tested or quarantined. To address this challenge, we formulate this setup as a sequential decision problem over a graph. In face of an exponential state space, combinatorial action space and partial observability, we design RLGN, a novel tractable Reinforcement Learning (RL) scheme to prioritize which nodes should be tested, using Graph Neural Networks (GNNs) to rank the graph nodes. We evaluate this approach in three types of social-networks: community-structured, preferential attachment, and based on statistics from real cellular tracking. RLGN consistently outperforms all baselines in our experiments. It suggests that prioritizing tests using RL on temporal graphs can increase the number of healthy people by $25\%$ and contain the epidemic $30\%$ more often than supervised approaches and $2.5\times$ more often than non-learned baselines using the same resources.
Abstract:Neural networks (NNs) have been widely applied in speech processing tasks, and, in particular, those employing microphone arrays. Nevertheless, most of the existing NN architectures can only deal with fixed and position-specific microphone arrays. In this paper, we present an NN architecture that can cope with microphone arrays on which no prior knowledge is presumed, and demonstrate its applicability on the speech dereverberation problem. To this end, our approach harnesses recent advances in the Deep Sets framework to design an architecture that enhances the reverberant log-spectrum. We provide a setup for training and testing such a network. Our experiments, using REVERB challenge datasets, show that the proposed position-agnostic setup performs comparably with the position-aware framework and sometimes slightly better, even with fewer microphones. In addition, it substantially improves performance over a single microphone architecture.
Abstract:Graph neural networks (GNNs) can process graphs of different sizes but their capacity to generalize across sizes is still not well understood. Size generalization is key to numerous GNN applications, from solving combinatorial optimization problems to learning in molecular biology. In such problems, obtaining labels and training on large graphs can be prohibitively expensive, but training on smaller graphs is possible. This paper puts forward the size-generalization question and characterizes important aspects of that problem theoretically and empirically. We show that even for very simple tasks, GNNs do not naturally generalize to graphs of larger size. Instead, their generalization performance is closely related to the distribution of patterns of connectivity and features and how that distribution changes from small to large graphs. Specifically, we show that in many cases, there are GNNs that can perfectly solve a task on small graphs but generalize poorly to large graphs and that these GNNs are encountered in practice. We then formalize size generalization as a domain-adaption problem and describe two learning setups where size generalization can be improved. First, as a self-supervised learning problem (SSL) over the target domain of large graphs. Second, as a semi-supervised learning problem when few samples are available in the target domain. We demonstrate the efficacy of these solutions on a diverse set of benchmark graph datasets.