Abstract:This paper reports on the NTIRE 2025 challenge on Text to Image (T2I) generation model quality assessment, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. The aim of this challenge is to address the fine-grained quality assessment of text-to-image generation models. This challenge evaluates text-to-image models from two aspects: image-text alignment and image structural distortion detection, and is divided into the alignment track and the structural track. The alignment track uses the EvalMuse-40K, which contains around 40K AI-Generated Images (AIGIs) generated by 20 popular generative models. The alignment track has a total of 371 registered participants. A total of 1,883 submissions are received in the development phase, and 507 submissions are received in the test phase. Finally, 12 participating teams submitted their models and fact sheets. The structure track uses the EvalMuse-Structure, which contains 10,000 AI-Generated Images (AIGIs) with corresponding structural distortion mask. A total of 211 participants have registered in the structure track. A total of 1155 submissions are received in the development phase, and 487 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Almost all methods have achieved better results than baseline methods, and the winning methods in both tracks have demonstrated superior prediction performance on T2I model quality assessment.
Abstract:$360^{\circ}$ omnidirectional images (ODIs) have gained considerable attention recently, and are widely used in various virtual reality (VR) and augmented reality (AR) applications. However, capturing such images is expensive and requires specialized equipment, making ODI synthesis increasingly important. While common 2D image generation and editing methods are rapidly advancing, these models struggle to deliver satisfactory results when generating or editing ODIs due to the unique format and broad 360$^{\circ}$ Field-of-View (FoV) of ODIs. To bridge this gap, we construct \textbf{\textit{Any2Omni}}, the first comprehensive ODI generation-editing dataset comprises 60,000+ training data covering diverse input conditions and up to 9 ODI generation and editing tasks. Built upon Any2Omni, we propose an \textbf{\underline{Omni}} model for \textbf{\underline{Omni}}-directional image generation and editing (\textbf{\textit{Omni$^2$}}), with the capability of handling various ODI generation and editing tasks under diverse input conditions using one model. Extensive experiments demonstrate the superiority and effectiveness of the proposed Omni$^2$ model for both the ODI generation and editing tasks.
Abstract:Image composition involves extracting a foreground object from one image and pasting it into another image through Image harmonization algorithms (IHAs), which aim to adjust the appearance of the foreground object to better match the background. Existing image quality assessment (IQA) methods may fail to align with human visual preference on image harmonization due to the insensitivity to minor color or light inconsistency. To address the issue and facilitate the advancement of IHAs, we introduce the first Image Quality Assessment Database for image Harmony evaluation (HarmonyIQAD), which consists of 1,350 harmonized images generated by 9 different IHAs, and the corresponding human visual preference scores. Based on this database, we propose a Harmony Image Quality Assessment (HarmonyIQA), to predict human visual preference for harmonized images. Extensive experiments show that HarmonyIQA achieves state-of-the-art performance on human visual preference evaluation for harmonized images, and also achieves competing results on traditional IQA tasks. Furthermore, cross-dataset evaluation also shows that HarmonyIQA exhibits better generalization ability than self-supervised learning-based IQA methods. Both HarmonyIQAD and HarmonyIQA will be made publicly available upon paper publication.