Sherman
Abstract:In this letter, we propose a novel mmWave beam selection method based on the environment semantics that are extracted from camera images taken at the user side. Specifically, we first define the environment semantics as the spatial distribution of the scatterers that affect the wireless propagation channels and utilize the keypoint detection technique to extract them from the input images. Then, we design a deep neural network with environment semantics as the input that can output the optimal beam pairs at UE and BS. Compared with the existing beam selection approaches that directly use images as the input, the proposed semantic-based method can explicitly obtain the environmental features that account for the propagation of wireless signals, and thus reduce the burden of storage and computation. Simulation results show that the proposed method can precisely estimate the location of the scatterers and outperform the existing image or LIDAR based works.
Abstract:In this paper, we propose an environment semantics aided wireless communication framework to reduce the transmission latency and improve the transmission reliability, where semantic information is extracted from environment image data, selectively encoded based on its task-relevance, and then fused to make decisions for channel related tasks. As a case study, we develop an environment semantics aided network architecture for mmWave communication systems, which is composed of a semantic feature extraction network, a feature selection algorithm, a task-oriented encoder, and a decision network. With images taken from street cameras and user's identification information as the inputs, the environment semantics aided network architecture is trained to predict the optimal beam index and the blockage state for the base station. It is seen that without pilot training or the costly beam scans, the environment semantics aided network architecture can realize extremely efficient beam prediction and timely blockage prediction, thus meeting requirements for ultra-reliable and low-latency communications (URLLCs). Simulation results demonstrate that compared with existing works, the proposed environment semantics aided network architecture can reduce system overheads such as storage space and computational cost while achieving satisfactory prediction accuracy and protecting user privacy.
Abstract:Semantic communication is regarded as the breakthrough beyond the Shannon paradigm, which transmits only semantic information to significantly improve communication efficiency. This article introduces a framework for generalized semantic communication system, which exploits the semantic information in both the multimodal source and the wireless channel environment. Subsequently, the developed deep learning enabled end-to-end semantic communication and environment semantics aided wireless communication techniques are demonstrated through two examples. The article concludes with several research challenges to boost the development of such a generalized semantic communication system.
Abstract:In this paper, we investigate the joint device activity and data detection in massive machine-type communications (mMTC) with a one-phase non-coherent scheme, where data bits are embedded in the pilot sequences and the base station simultaneously detects active devices and their embedded data bits without explicit channel estimation. Due to the correlated sparsity pattern introduced by the non-coherent transmission scheme, the traditional approximate message passing (AMP) algorithm cannot achieve satisfactory performance. Therefore, we propose a deep learning (DL) modified AMP network (DL-mAMPnet) that enhances the detection performance by effectively exploiting the pilot activity correlation. The DL-mAMPnet is constructed by unfolding the AMP algorithm into a feedforward neural network, which combines the principled mathematical model of the AMP algorithm with the powerful learning capability, thereby benefiting from the advantages of both techniques. Trainable parameters are introduced in the DL-mAMPnet to approximate the correlated sparsity pattern and the large-scale fading coefficient. Moreover, a refinement module is designed to further advance the performance by utilizing the spatial feature caused by the correlated sparsity pattern. Simulation results demonstrate that the proposed DL-mAMPnet can significantly outperform traditional algorithms in terms of the symbol error rate performance.
Abstract:Communications system with analog or hybrid analog/digital architectures usually relies on a pre-defined codebook to perform beamforming. With the increase in the size of the antenna array, the characteristics of the spherical wavefront in the near-field situation are not negligible. Therefore, it is necessary to design a codebook that is adaptive to near-field scenarios. In this letter, we investigate the hierarchical codebook design method in the near-field situation. We develop a steering beam gain calculation method and design the lower-layer codebook to satisfy the coverage of the Fresnel region. For the upper-layer codebook, we propose beam rotation and beam relocation methods to place an arbitrary beam pattern at target locations. The simulation results show the superiority of the proposed near-field hierarchical codebook design.
Abstract:Reconfigurable Intelligent Surface (RIS) plays a pivotal role in enhancing source localization accuracy. Based on the information inequality of Fisher information analyses, the Cram\'{e}r-Rao Bound (CRB) of the localization error can be used to evaluate the localization accuracy for a given set of RIS coefficients. However, there is a lack of research in optimizing these RIS coefficients to decrease the CRB under the constraint imposed by the RIS hardware. In this paper, we adopt the manifold optimization method to derive the locally optimal CRB of the localization error, where the RIS coefficients are restricted to lie on the complex circle manifold. Specifically, the Wirtinger derivatives are calculated in the gradient descent part, and the Riemannian nonlinear acceleration technique is employed to speed up the convergence rate. Simulation results show that the proposed method can yield the locally optimal RIS coefficients and can significantly decrease the CRB of localization error. Moreover, the iteration number can be reduced by the acceleration technique.
Abstract:For high mobility communication scenario, the recently emerged orthogonal time frequency space (OTFS) modulation introduces a new delay-Doppler domain signal space, and can provide better communication performance than traditional orthogonal frequency division multiplexing system. This article focuses on the joint channel estimation and data detection (JCEDD) for hybrid reconfigurable intelligent surface (HRIS) aided millimeter wave (mmWave) OTFS systems. Firstly, a new transmission structure is designed. Within the pilot durations of the designed structure, partial HRIS elements are alternatively activated. The time domain channel model is then exhibited. Secondly, the received signal model for both the HRIS over time domain and the base station over delay-Doppler domain are studied. Thirdly, by utilizing channel parameters acquired at the HRIS, an HRIS beamforming design strategy is proposed. For the OTFS transmission, we propose a JCEDD scheme over delay-Doppler domain. In this scheme, message passing (MP) algorithm is designed to simultaneously obtain the equivalent channel gain and the data symbols. On the other hand, the channel parameters, i.e., the Doppler shift, the channel sparsity, and the channel variance, are updated through expectation-maximization (EM) algorithm. By iteratively executing the MP and EM algorithm, both the channel and the unknown data symbols can be accurately acquired. Finally, simulation results are provided to validate the effectiveness of our proposed JCEDD scheme.
Abstract:Semantic communications has received growing interest since it can remarkably reduce the amount of data to be transmitted without missing critical information. Most existing works explore the semantic encoding and transmission for text and apply techniques in Natural Language Processing (NLP) to interpret the meaning of the text. In this paper, we conceive the semantic communications for image data that is much more richer in semantics and bandwidth sensitive. We propose an reinforcement learning based adaptive semantic coding (RL-ASC) approach that encodes images beyond pixel level. Firstly, we define the semantic concept of image data that includes the category, spatial arrangement, and visual feature as the representation unit, and propose a convolutional semantic encoder to extract semantic concepts. Secondly, we propose the image reconstruction criterion that evolves from the traditional pixel similarity to semantic similarity and perceptual performance. Thirdly, we design a novel RL-based semantic bit allocation model, whose reward is the increase in rate-semantic-perceptual performance after encoding a certain semantic concept with adaptive quantization level. Thus, the task-related information is preserved and reconstructed properly while less important data is discarded. Finally, we propose the Generative Adversarial Nets (GANs) based semantic decoder that fuses both locally and globally features via an attention module. Experimental results demonstrate that the proposed RL-ASC is noise robust and could reconstruct visually pleasant and semantic consistent image, and saves times of bit cost compared to standard codecs and other deep learning-based image codecs.
Abstract:The blockage is a key challenge for millimeter wave communication systems, since these systems mainly work on line-of-sight (LOS) links, and the blockage can degrade the system performance significantly. It is recently found that visual information, easily obtained by cameras, can be utilized to extract the location and size information of the environmental objects, which can help to infer the communication parameters, such as blockage status. In this paper, we propose a novel vision-aided handover framework for UAV-assisted V2X system, which leverages the images taken by cameras at the mobile station (MS) to choose the direct link or UAV-assisted link to avoid blockage caused by the vehicles on the road. We propose a deep reinforcement learning algorithm to optimize the handover and UAV trajectory policy in order to improve the long-term throughput. Simulations results demonstrate the effectiveness of using visual information to deal with the blockage issues.
Abstract:Visual information, captured for example by cameras, can effectively reflect the sizes and locations of the environmental scattering objects, and thereby can be used to infer communications parameters like propagation directions, receiver powers, as well as the blockage status. In this paper, we propose a novel beam alignment framework that leverages images taken by cameras installed at the mobile user. Specifically, we utilize 3D object detection techniques to extract the size and location information of the dynamic vehicles around the mobile user, and design a deep neural network (DNN) to infer the optimal beam pair for transceivers without any pilot signal overhead. Moreover, to avoid performing beam alignment too frequently or too slowly, a beam coherence time (BCT) prediction method is developed based on the vision information. This can effectively improve the transmission rate compared with the beam alignment approach with the fixed BCT. Simulation results show that the proposed vision based beam alignment methods outperform the existing LIDAR and vision based solutions, and demand for much lower hardware cost and communication overhead.