Abstract:Graph Neural Networks (GNNs) have achieved impressive results in graph classification tasks, but they struggle to generalize effectively when faced with out-of-distribution (OOD) data. Several approaches have been proposed to address this problem. Among them, one solution is to diversify training distributions in vanilla classification by modifying the data environment, yet accessing the environment information is complex. Besides, another promising approach involves rationalization, extracting invariant rationales for predictions. However, extracting rationales is difficult due to limited learning signals, resulting in less accurate rationales and diminished predictions. To address these challenges, in this paper, we propose a Cooperative Classification and Rationalization (C2R) method, consisting of the classification and the rationalization module. Specifically, we first assume that multiple environments are available in the classification module. Then, we introduce diverse training distributions using an environment-conditional generative network, enabling robust graph representations. Meanwhile, the rationalization module employs a separator to identify relevant rationale subgraphs while the remaining non-rationale subgraphs are de-correlated with labels. Next, we align graph representations from the classification module with rationale subgraph representations using the knowledge distillation methods, enhancing the learning signal for rationales. Finally, we infer multiple environments by gathering non-rationale representations and incorporate them into the classification module for cooperative learning. Extensive experimental results on both benchmarks and synthetic datasets demonstrate the effectiveness of C2R. Code is available at https://github.com/yuelinan/Codes-of-C2R.
Abstract:Cognitive diagnosis seeks to estimate the cognitive states of students by exploring their logged practice quiz data. It plays a pivotal role in personalized learning guidance within intelligent education systems. In this paper, we focus on an important, practical, yet often underexplored task: domain-level zero-shot cognitive diagnosis (DZCD), which arises due to the absence of student practice logs in newly launched domains. Recent cross-domain diagnostic models have been demonstrated to be a promising strategy for DZCD. These methods primarily focus on how to transfer student states across domains. However, they might inadvertently incorporate non-transferable information into student representations, thereby limiting the efficacy of knowledge transfer. To tackle this, we propose Zero-1-to-3, a domain-level zero-shot cognitive diagnosis framework via one batch of early-bird students towards three diagnostic objectives. Our approach initiates with pre-training a diagnosis model with dual regularizers, which decouples student states into domain-shared and domain-specific parts. The shared cognitive signals can be transferred to the target domain, enriching the cognitive priors for the new domain, which ensures the cognitive state propagation objective. Subsequently, we devise a strategy to generate simulated practice logs for cold-start students through analyzing the behavioral patterns from early-bird students, fulfilling the domain-adaption goal. Consequently, we refine the cognitive states of cold-start students as diagnostic outcomes via virtual data, aligning with the diagnosis-oriented goal. Finally, extensive experiments on six real-world datasets highlight the efficacy of our model for DZCD and its practical application in question recommendation.
Abstract:Large Language Models (LLMs) have gained prominence in the field of Legal Intelligence, offering potential applications in assisting legal professionals and laymen. However, the centralized training of these Legal LLMs raises data privacy concerns, as legal data is distributed among various institutions containing sensitive individual information. This paper addresses this challenge by exploring the integration of Legal LLMs with Federated Learning (FL) methodologies. By employing FL, Legal LLMs can be fine-tuned locally on devices or clients, and their parameters are aggregated and distributed on a central server, ensuring data privacy without directly sharing raw data. However, computation and communication overheads hinder the full fine-tuning of LLMs under the FL setting. Moreover, the distribution shift of legal data reduces the effectiveness of FL methods. To this end, in this paper, we propose the first Federated Legal Large Language Model (FedJudge) framework, which fine-tunes Legal LLMs efficiently and effectively. Specifically, FedJudge utilizes parameter-efficient fine-tuning methods to update only a few additional parameters during the FL training. Besides, we explore the continual learning methods to preserve the global model's important parameters when training local clients to mitigate the problem of data shifts. Extensive experimental results on three real-world datasets clearly validate the effectiveness of FedJudge. Code is released at https://github.com/yuelinan/FedJudge.