Abstract:In this paper, we explore the question of whether language models (LLMs) can support cost-efficient information extraction from complex tables. We introduce schema-driven information extraction, a new task that uses LLMs to transform tabular data into structured records following a human-authored schema. To assess various LLM's capabilities on this task, we develop a benchmark composed of tables from three diverse domains: machine learning papers, chemistry tables, and webpages. Accompanying the benchmark, we present InstrucTE, a table extraction method based on instruction-tuned LLMs. This method necessitates only a human-constructed extraction schema, and incorporates an error-recovery strategy. Notably, InstrucTE demonstrates competitive performance without task-specific labels, achieving an F1 score ranging from 72.3 to 95.7. Moreover, we validate the feasibility of distilling more compact table extraction models to minimize extraction costs and reduce API reliance. This study paves the way for the future development of instruction-following models for cost-efficient table extraction.
Abstract:We present SET, a frustratingly Simple-yet-effective approach for Entity Tracking in procedural text. Compared with state-of-the-art entity tracking models that require domain-specific pre-training, SET simply fine-tunes off-the-shelf T5 with customized formats and gets comparable or even better performance on multiple datasets. Concretely, SET tackles the state and location prediction in entity tracking independently and formulates them as multi-choice and extractive QA problems, respectively. Through a series of careful analyses, we show that T5's supervised multi-task learning plays an important role in the success of SET. In addition, we reveal that SET has a strong capability of understanding implicit entity transformations, suggesting that multi-task transfer learning should be further explored in future entity tracking research.
Abstract:Anaphora resolution is an important task for information extraction across a range of languages, text genres, and domains, motivating the need for methods that do not require large annotated datasets. In-context learning has emerged as a promising approach, yet there are a number of challenges in applying in-context learning to resolve anaphora. For example, encoding a single in-context demonstration that consists of: an anaphor, a paragraph-length context, and a list of corresponding antecedents, requires conditioning a language model on a long sequence of tokens, limiting the number of demonstrations per prompt. In this paper, we present MICE (Mixtures of In-Context Experts), which we demonstrate is effective for few-shot anaphora resolution in scientific protocols (Tamari et al., 2021). Given only a handful of training examples, MICE combines the predictions of hundreds of in-context experts, yielding a 30% increase in F1 score over a competitive prompt retrieval baseline. Furthermore, we show MICE can be used to train compact student models without sacrificing performance. As far as we are aware, this is the first work to present experimental results demonstrating the effectiveness of in-context learning on the task of few-shot anaphora resolution in scientific protocols.
Abstract:In this paper we present SynKB, an open-source, automatically extracted knowledge base of chemical synthesis protocols. Similar to proprietary chemistry databases such as Reaxsys, SynKB allows chemists to retrieve structured knowledge about synthetic procedures. By taking advantage of recent advances in natural language processing for procedural texts, SynKB supports more flexible queries about reaction conditions, and thus has the potential to help chemists search the literature for conditions used in relevant reactions as they design new synthetic routes. Using customized Transformer models to automatically extract information from 6 million synthesis procedures described in U.S. and EU patents, we show that for many queries, SynKB has higher recall than Reaxsys, while maintaining high precision. We plan to make SynKB available as an open-source tool; in contrast, proprietary chemistry databases require costly subscriptions.
Abstract:Scene text image super-resolution (STISR) has been regarded as an important pre-processing task for text recognition from low-resolution scene text images. Most recent approaches use the recognizer's feedback as clues to guide super-resolution. However, directly using recognition clue has two problems: 1) Compatibility. It is in the form of probability distribution, has an obvious modal gap with STISR - a pixel-level task; 2) Inaccuracy. it usually contains wrong information, thus will mislead the main task and degrade super-resolution performance. In this paper, we present a novel method C3-STISR that jointly exploits the recognizer's feedback, visual and linguistical information as clues to guide super-resolution. Here, visual clue is from the images of texts predicted by the recognizer, which is informative and more compatible with the STISR task; while linguistical clue is generated by a pre-trained character-level language model, which is able to correct the predicted texts. We design effective extraction and fusion mechanisms for the triple cross-modal clues to generate a comprehensive and unified guidance for super-resolution. Extensive experiments on TextZoom show that C3-STISR outperforms the SOTA methods in fidelity and recognition performance. Code is available in https://github.com/zhaominyiz/C3-STISR.
Abstract:A novel palpation-based incision detection strategy in the laryngeal region, potentially for robotic tracheotomy, is proposed in this letter. A tactile sensor is introduced to measure tissue hardness in the specific laryngeal region by gentle contact. The kernel fusion method is proposed to combine the Squared Exponential (SE) kernel with Ornstein-Uhlenbeck (OU) kernel to figure out the drawbacks that the existing kernel functions are not sufficiently optimal in this scenario. Moreover, we further regularize exploration factor and greed factor, and the tactile sensor's moving distance and the robotic base link's rotation angle during the incision localization process are considered as new factors in the acquisition strategy. We conducted simulation and physical experiments to compare the newly proposed algorithm - Rescaling Acquisition Strategy with Energy Constraints (RASEC) in trachea detection with current palpation-based acquisition strategies. The result indicates that the proposed acquisition strategy with fusion kernel can successfully localize the incision with the highest algorithm performance (Average Precision 0.932, Average Recall 0.973, Average F1 score 0.952). During the robotic palpation process, the cumulative moving distance is reduced by 50%, and the cumulative rotation angle is reduced by 71.4% with no sacrifice in the comprehensive performance capabilities. Therefore, it proves that RASEC can efficiently suggest the incision zone in the laryngeal region and greatly reduced the energy loss.
Abstract:Non-prehensile multi-object rearrangement is a robotic task of planning feasible paths and transferring multiple objects to their predefined target poses without grasping. It needs to consider how each object reaches the target and the order of object movement, which significantly deepens the complexity of the problem. To address these challenges, we propose a hierarchical policy to divide and conquer for non-prehensile multi-object rearrangement. In the high-level policy, guided by a designed policy network, the Monte Carlo Tree Search efficiently searches for the optimal rearrangement sequence among multiple objects, which benefits from imitation and reinforcement. In the low-level policy, the robot plans the paths according to the order of path primitives and manipulates the objects to approach the goal poses one by one. We verify through experiments that the proposed method can achieve a higher success rate, fewer steps, and shorter path length compared with the state-of-the-art.
Abstract:Recent work has demonstrated that pre-training in-domain language models can boost performance when adapting to a new domain. However, the costs associated with pre-training raise an important question: given a fixed budget, what steps should an NLP practitioner take to maximize performance? In this paper, we study domain adaptation under budget constraints, and approach it as a customer choice problem between data annotation and pre-training. Specifically, we measure the annotation cost of three procedural text datasets and the pre-training cost of three in-domain language models. Then we evaluate the utility of different combinations of pre-training and data annotation under varying budget constraints to assess which combination strategy works best. We find that, for small budgets, spending all funds on annotation leads to the best performance; once the budget becomes large enough, a combination of data annotation and in-domain pre-training works more optimally. We therefore suggest that task-specific data annotation should be part of an economical strategy when adapting an NLP model to a new domain.
Abstract:Face recognition has been extensively studied in computer vision and artificial intelligence communities in recent years. An important issue of face recognition is data privacy, which receives more and more public concerns. As a common privacy-preserving technique, Federated Learning is proposed to train a model cooperatively without sharing data between parties. However, as far as we know, it has not been successfully applied in face recognition. This paper proposes a framework named FedFace to innovate federated learning for face recognition. Specifically, FedFace relies on two major innovative algorithms, Partially Federated Momentum (PFM) and Federated Validation (FV). PFM locally applies an estimated equivalent global momentum to approximating the centralized momentum-SGD efficiently. FV repeatedly searches for better federated aggregating weightings via testing the aggregated models on some private validation datasets, which can improve the model's generalization ability. The ablation study and extensive experiments validate the effectiveness of the FedFace method and show that it is comparable to or even better than the centralized baseline in performance.
Abstract:We develop Process Execution Graphs~(PEG), a document-level representation of real-world wet lab biochemistry protocols, addressing challenges such as cross-sentence relations, long-range coreference, grounding, and implicit arguments. We manually annotate PEGs in a corpus of complex lab protocols with a novel interactive textual simulator that keeps track of entity traits and semantic constraints during annotation. We use this data to develop graph-prediction models, finding them to be good at entity identification and local relation extraction, while our corpus facilitates further exploration of challenging long-range relations.