Abstract:Recent LLMs increasingly integrate reasoning mechanisms like Chain-of-Thought (CoT). However, this explicit reasoning exposes a new attack surface for inference-time backdoors, which inject malicious reasoning paths without altering model parameters. Because these attacks generate linguistically coherent paths, they effectively evade conventional detection. To address this, we propose STAR (State-Transition Amplification Ratio), a framework that detects backdoors by analyzing output probability shifts. STAR exploits the statistical discrepancy where a malicious input-induced path exhibits high posterior probability despite a low prior probability in the model's general knowledge. We quantify this state-transition amplification and employ the CUSUM algorithm to detect persistent anomalies. Experiments across diverse models (8B-70B) and five benchmark datasets demonstrate that STAR exhibits robust generalization capabilities, consistently achieving near-perfect performance (AUROC $\approx$ 1.0) with approximately $42\times$ greater efficiency than existing baselines. Furthermore, the framework proves robust against adaptive attacks attempting to bypass detection.
Abstract:With the advancement of AI-based speech synthesis technologies such as Deep Voice, there is an increasing risk of voice spoofing attacks, including voice phishing and fake news, through unauthorized use of others' voices. Existing defenses that inject adversarial perturbations directly into audio signals have limited effectiveness, as these perturbations can easily be neutralized by speech enhancement methods. To overcome this limitation, we propose RoVo (Robust Voice), a novel proactive defense technique that injects adversarial perturbations into high-dimensional embedding vectors of audio signals, reconstructing them into protected speech. This approach effectively defends against speech synthesis attacks and also provides strong resistance to speech enhancement models, which represent a secondary attack threat. In extensive experiments, RoVo increased the Defense Success Rate (DSR) by over 70% compared to unprotected speech, across four state-of-the-art speech synthesis models. Specifically, RoVo achieved a DSR of 99.5% on a commercial speaker-verification API, effectively neutralizing speech synthesis attack. Moreover, RoVo's perturbations remained robust even under strong speech enhancement conditions, outperforming traditional methods. A user study confirmed that RoVo preserves both naturalness and usability of protected speech, highlighting its effectiveness in complex and evolving threat scenarios.