Abstract:Model Predictive Path Integral (MPPI) controller is used to solve unconstrained optimal control problems and Control Barrier Function (CBF) is a tool to impose strict inequality constraints, a.k.a, barrier constraints. In this work, we propose an integration of these two methods that employ CBF-like conditions to guide the control sampling procedure of MPPI. CBFs provide an inequality constraint restricting the rate of change of barrier functions by a classK function of the barrier itself. We instead impose the CBF condition as an equality constraint by choosing a parametric linear classK function and treating this parameter as a state in an augmented system. The time derivative of this parameter acts as an additional control input that is designed by MPPI. A cost function is further designed to reignite Nagumo's theorem at the boundary of the safe set by promoting specific values of classK parameter to enforce safety. Our problem formulation results in an MPPI subject to multiple state and control-dependent equality constraints which are non-trivial to satisfy with randomly sampled control inputs. We therefore also introduce state transformations and control projection operations, inspired by the literature on path planning for manifolds, to resolve the aforementioned issue. We show empirically through simulations and experiments on quadrotor that our proposed algorithm exhibits better sampled efficiency and enhanced capability to operate closer to the safe set boundary over vanilla MPPI.
Abstract:Autonomous robots are increasingly deployed for long-term information-gathering tasks, which pose two key challenges: planning informative trajectories in environments that evolve across space and time, and ensuring persistent operation under energy constraints. This paper presents a unified framework, mEclares, that addresses both challenges through adaptive ergodic search and energy-aware scheduling in multi-robot systems. Our contributions are two-fold: (1) we model real-world variability using stochastic spatiotemporal environments, where the underlying information evolves unpredictably due to process uncertainty. To guide exploration, we construct a target information spatial distribution (TISD) based on clarity, a metric that captures the decay of information in the absence of observations and highlights regions of high uncertainty; and (2) we introduce Robustmesch (Rmesch), an online scheduling method that enables persistent operation by coordinating rechargeable robots sharing a single mobile charging station. Unlike prior work, our approach avoids reliance on preplanned schedules, static or dedicated charging stations, and simplified robot dynamics. Instead, the scheduler supports general nonlinear models, accounts for uncertainty in the estimated position of the charging station, and handles central node failures. The proposed framework is validated through real-world hardware experiments, and feasibility guarantees are provided under specific assumptions.
Abstract:Human-machine collaboration often involves constrained optimization problems for decision-making processes. However, when the machine is a dynamical system with a continuously evolving state, infeasibility due to multiple conflicting constraints can lead to dangerous outcomes. In this work, we propose a heuristic-based method that resolves infeasibility at every time step by selectively disregarding a subset of soft constraints based on the past values of the Lagrange multipliers. Compared to existing approaches, our method requires the solution of a smaller optimization problem to determine feasibility, resulting in significantly faster computation. Through a series of simulations, we demonstrate that our algorithm achieves performance comparable to state-of-the-art methods while offering improved computational efficiency.
Abstract:Accurate perception, state estimation and mapping are essential for safe robotic navigation as planners and controllers rely on these components for safety-critical decisions. However, existing mapping approaches often assume perfect pose estimates, an unrealistic assumption that can lead to incorrect obstacle maps and therefore collisions. This paper introduces a framework for certifiably-correct mapping that ensures that the obstacle map correctly classifies obstacle-free regions despite the odometry drift in vision-based localization systems (VIO}/SLAM). By deflating the safe region based on the incremental odometry error at each timestep, we ensure that the map remains accurate and reliable locally around the robot, even as the overall odometry error with respect to the inertial frame grows unbounded. Our contributions include two approaches to modify popular obstacle mapping paradigms, (I) Safe Flight Corridors, and (II) Signed Distance Fields. We formally prove the correctness of both methods, and describe how they integrate with existing planning and control modules. Simulations using the Replica dataset highlight the efficacy of our methods compared to state-of-the-art techniques. Real-world experiments with a robotic rover show that, while baseline methods result in collisions with previously mapped obstacles, the proposed framework enables the rover to safely stop before potential collisions.
Abstract:Ensuring safe autonomy is crucial for deploying aerial robots in real-world applications. However, safety is a multifaceted challenge that must be addressed from multiple perspectives, including navigation in dynamic environments, operation under resource constraints, and robustness against adversarial attacks and uncertainties. In this paper, we present the authors' recent work that tackles some of these challenges and highlights key aspects that must be considered to enhance the safety and performance of autonomous aerial systems. All presented approaches are validated through hardware experiments.
Abstract:Robot navigation in dynamic, crowded environments poses a significant challenge due to the inherent uncertainties in the obstacle model. In this work, we propose a risk-adaptive approach based on the Conditional Value-at-Risk Barrier Function (CVaR-BF), where the risk level is automatically adjusted to accept the minimum necessary risk, achieving a good performance in terms of safety and optimization feasibility under uncertainty. Additionally, we introduce a dynamic zone-based barrier function which characterizes the collision likelihood by evaluating the relative state between the robot and the obstacle. By integrating risk adaptation with this new function, our approach adaptively expands the safety margin, enabling the robot to proactively avoid obstacles in highly dynamic environments. Comparisons and ablation studies demonstrate that our method outperforms existing social navigation approaches, and validate the effectiveness of our proposed framework.
Abstract:Ensuring resilient consensus in multi-robot systems with misbehaving agents remains a challenge, as many existing network resilience properties are inherently combinatorial and globally defined. While previous works have proposed control laws to enhance or preserve resilience in multi-robot networks, they often assume a fixed topology with known resilience properties, or require global state knowledge. These assumptions may be impractical in physically-constrained environments, where safety and resilience requirements are conflicting, or when misbehaving agents corrupt the shared information. In this work, we propose a distributed control law that enables each robot to guarantee resilient consensus and safety during its navigation without fixed topologies using only locally available information. To this end, we establish a new sufficient condition for resilient consensus in time-varying networks based on the degree of non-misbehaving or normal agents. Using this condition, we design a Control Barrier Function (CBF)-based controller that guarantees resilient consensus and collision avoidance without requiring estimates of global state and/or control actions of all other robots. Finally, we validate our method through simulations.
Abstract:In this paper, we present the methodology and results for a real-time velocity trajectory optimization for a solar-powered autonomous surface vessel (ASV), where we combine indirect optimal control techniques with iterative learning. The ASV exhibits cyclic operation due to the nature of the solar profile, but weather patterns create inevitable disturbances in this profile. The nature of the problem results in a formulation where the satisfaction of pointwise-in-time state of charge constraints does not generally guarantee persistent feasibility, and the goal is to maximize information gathered over a very long (ultimately persistent) time duration. To address these challenges, we first use barrier functions to tighten pointwise-in-time state of charge constraints by the minimal amount necessary to achieve persistent feasibility. We then use indirect methods to derive a simple switching control law, where the optimal velocity is shown to be an undetermined constant value during each constraint-inactive time segment. To identify this optimal constant velocity (which can vary from one segment to the next), we employ an iterative learning approach. The result is a simple closed-form control law that does not require a solar forecast. We present simulation-based validation results, based on a model of the SeaTrac SP-48 ASV and solar data from the North Carolina coast. These simulation results show that the proposed methodology, which amounts to a closed-form controller and simple iterative learning update law, performs nearly as well as a model predictive control approach that requires an accurate future solar forecast and significantly greater computational capability.
Abstract:This paper extends recursive least squares (RLS) to include time-varying regularization. This extension provides flexibility for updating the least squares regularization term in real time. Existing results with constant regularization imply that the parameter-estimation error dynamics of RLS are globally attractive to zero if and only the regressor is weakly persistently exciting. This work shows that, by extending classical RLS to include a time-varying (fading) regularization term that converges to zero, the parameter-estimation error dynamics are globally attractive to zero without weakly persistent excitation. Moreover, if the fading regularization term converges to zero in finite time, then the parameter estimation error also converges to zero in finite time. Finally, we propose rank-1 fading regularization (R1FR) RLS, a time-varying regularization algorithm with fading regularization that converges to zero, and which runs in the same computational complexity as classical RLS. Numerical examples are presented to validate theoretical guarantees and to show how R1FR-RLS can protect against over-regularization.
Abstract:Path Planning for stochastic hybrid systems presents a unique challenge of predicting distributions of future states subject to a state-dependent dynamics switching function. In this work, we propose a variant of Model Predictive Path Integral Control (MPPI) to plan kinodynamic paths for such systems. Monte Carlo may be inaccurate when few samples are chosen to predict future states under state-dependent disturbances. We employ recently proposed Unscented Transform-based methods to capture stochasticity in the states as well as the state-dependent switching surfaces. This is in contrast to previous works that perform switching based only on the mean of predicted states. We focus our motion planning application on the navigation of a mobile robot in the presence of dynamically moving agents whose responses are based on sensor-constrained attention zones. We evaluate our framework on a simulated mobile robot and show faster convergence to a goal without collisions when the robot exploits the hybrid human dynamics versus when it does not.