Abstract:Human-machine collaboration often involves constrained optimization problems for decision-making processes. However, when the machine is a dynamical system with a continuously evolving state, infeasibility due to multiple conflicting constraints can lead to dangerous outcomes. In this work, we propose a heuristic-based method that resolves infeasibility at every time step by selectively disregarding a subset of soft constraints based on the past values of the Lagrange multipliers. Compared to existing approaches, our method requires the solution of a smaller optimization problem to determine feasibility, resulting in significantly faster computation. Through a series of simulations, we demonstrate that our algorithm achieves performance comparable to state-of-the-art methods while offering improved computational efficiency.
Abstract:This article presents a Visual Servoing Nonlinear Model Predictive Control (NMPC) scheme for autonomously tracking a moving target using multirotor Unmanned Aerial Vehicles (UAVs). The scheme is developed for surveillance and tracking of contour-based areas with evolving features. NMPC is used to manage input and state constraints, while additional barrier functions are incorporated in order to ensure system safety and optimal performance. The proposed control scheme is designed based on the extraction and implementation of the full dynamic model of the features describing the target and the state variables. Real-time simulations and experiments using a quadrotor UAV equipped with a camera demonstrate the effectiveness of the proposed strategy.