Alert button
Picture for David Wisth

David Wisth

Alert button

Hilti-Oxford Dataset: A Millimetre-Accurate Benchmark for Simultaneous Localization and Mapping

Add code
Bookmark button
Alert button
Aug 21, 2022
Lintong Zhang, Michael Helmberger, Lanke Frank Tarimo Fu, David Wisth, Marco Camurri, Davide Scaramuzza, Maurice Fallon

Figure 1 for Hilti-Oxford Dataset: A Millimetre-Accurate Benchmark for Simultaneous Localization and Mapping
Figure 2 for Hilti-Oxford Dataset: A Millimetre-Accurate Benchmark for Simultaneous Localization and Mapping
Figure 3 for Hilti-Oxford Dataset: A Millimetre-Accurate Benchmark for Simultaneous Localization and Mapping
Figure 4 for Hilti-Oxford Dataset: A Millimetre-Accurate Benchmark for Simultaneous Localization and Mapping
Viaarxiv icon

Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview and Lessons Learned

Add code
Bookmark button
Alert button
Jul 11, 2022
Marco Tranzatto, Mihir Dharmadhikari, Lukas Bernreiter, Marco Camurri, Shehryar Khattak, Frank Mascarich, Patrick Pfreundschuh, David Wisth, Samuel Zimmermann, Mihir Kulkarni, Victor Reijgwart, Benoit Casseau, Timon Homberger, Paolo De Petris, Lionel Ott, Wayne Tubby, Gabriel Waibel, Huan Nguyen, Cesar Cadena, Russell Buchanan, Lorenz Wellhausen, Nikhil Khedekar, Olov Andersson, Lintong Zhang, Takahiro Miki, Tung Dang, Matias Mattamala, Markus Montenegro, Konrad Meyer, Xiangyu Wu, Adrien Briod, Mark Mueller, Maurice Fallon, Roland Siegwart, Marco Hutter, Kostas Alexis

Figure 1 for Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview and Lessons Learned
Figure 2 for Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview and Lessons Learned
Figure 3 for Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview and Lessons Learned
Figure 4 for Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview and Lessons Learned
Viaarxiv icon

CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge

Add code
Bookmark button
Alert button
Jan 18, 2022
Marco Tranzatto, Frank Mascarich, Lukas Bernreiter, Carolina Godinho, Marco Camurri, Shehryar Khattak, Tung Dang, Victor Reijgwart, Johannes Loeje, David Wisth, Samuel Zimmermann, Huan Nguyen, Marius Fehr, Lukas Solanka, Russell Buchanan, Marko Bjelonic, Nikhil Khedekar, Mathieu Valceschini, Fabian Jenelten, Mihir Dharmadhikari, Timon Homberger, Paolo De Petris, Lorenz Wellhausen, Mihir Kulkarni, Takahiro Miki, Satchel Hirsch, Markus Montenegro, Christos Papachristos, Fabian Tresoldi, Jan Carius, Giorgio Valsecchi, Joonho Lee, Konrad Meyer, Xiangyu Wu, Juan Nieto, Andy Smith, Marco Hutter, Roland Siegwart, Mark Mueller, Maurice Fallon, Kostas Alexis

Figure 1 for CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge
Figure 2 for CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge
Figure 3 for CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge
Figure 4 for CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge
Viaarxiv icon

Balancing the Budget: Feature Selection and Tracking for Multi-Camera Visual-Inertial Odometry

Add code
Bookmark button
Alert button
Sep 13, 2021
Lintong Zhang, David Wisth, Marco Camurri, Maurice Fallon

Figure 1 for Balancing the Budget: Feature Selection and Tracking for Multi-Camera Visual-Inertial Odometry
Figure 2 for Balancing the Budget: Feature Selection and Tracking for Multi-Camera Visual-Inertial Odometry
Figure 3 for Balancing the Budget: Feature Selection and Tracking for Multi-Camera Visual-Inertial Odometry
Figure 4 for Balancing the Budget: Feature Selection and Tracking for Multi-Camera Visual-Inertial Odometry
Viaarxiv icon

VILENS: Visual, Inertial, Lidar, and Leg Odometry for All-Terrain Legged Robots

Add code
Bookmark button
Alert button
Jul 15, 2021
David Wisth, Marco Camurri, Maurice Fallon

Figure 1 for VILENS: Visual, Inertial, Lidar, and Leg Odometry for All-Terrain Legged Robots
Figure 2 for VILENS: Visual, Inertial, Lidar, and Leg Odometry for All-Terrain Legged Robots
Figure 3 for VILENS: Visual, Inertial, Lidar, and Leg Odometry for All-Terrain Legged Robots
Figure 4 for VILENS: Visual, Inertial, Lidar, and Leg Odometry for All-Terrain Legged Robots
Viaarxiv icon

Unified Multi-Modal Landmark Tracking for Tightly Coupled Lidar-Visual-Inertial Odometry

Add code
Bookmark button
Alert button
Nov 13, 2020
David Wisth, Marco Camurri, Sandipan Das, Maurice Fallon

Figure 1 for Unified Multi-Modal Landmark Tracking for Tightly Coupled Lidar-Visual-Inertial Odometry
Figure 2 for Unified Multi-Modal Landmark Tracking for Tightly Coupled Lidar-Visual-Inertial Odometry
Figure 3 for Unified Multi-Modal Landmark Tracking for Tightly Coupled Lidar-Visual-Inertial Odometry
Figure 4 for Unified Multi-Modal Landmark Tracking for Tightly Coupled Lidar-Visual-Inertial Odometry
Viaarxiv icon

The Newer College Dataset: Handheld LiDAR, Inertial and Vision with Ground Truth

Add code
Bookmark button
Alert button
Mar 12, 2020
Milad Ramezani, Yiduo Wang, Marco Camurri, David Wisth, Matias Mattamala, Maurice Fallon

Figure 1 for The Newer College Dataset: Handheld LiDAR, Inertial and Vision with Ground Truth
Figure 2 for The Newer College Dataset: Handheld LiDAR, Inertial and Vision with Ground Truth
Figure 3 for The Newer College Dataset: Handheld LiDAR, Inertial and Vision with Ground Truth
Figure 4 for The Newer College Dataset: Handheld LiDAR, Inertial and Vision with Ground Truth
Viaarxiv icon

Preintegrated Velocity Bias Estimation to Overcome Contact Nonlinearities in Legged Robot Odometry

Add code
Bookmark button
Alert button
Oct 22, 2019
David Wisth, Marco Camurri, Maurice Fallon

Figure 1 for Preintegrated Velocity Bias Estimation to Overcome Contact Nonlinearities in Legged Robot Odometry
Figure 2 for Preintegrated Velocity Bias Estimation to Overcome Contact Nonlinearities in Legged Robot Odometry
Figure 3 for Preintegrated Velocity Bias Estimation to Overcome Contact Nonlinearities in Legged Robot Odometry
Figure 4 for Preintegrated Velocity Bias Estimation to Overcome Contact Nonlinearities in Legged Robot Odometry
Viaarxiv icon

Robust Legged Robot State Estimation Using Factor Graph Optimization

Add code
Bookmark button
Alert button
Apr 05, 2019
David Wisth, Marco Camurri, Maurice Fallon

Figure 1 for Robust Legged Robot State Estimation Using Factor Graph Optimization
Figure 2 for Robust Legged Robot State Estimation Using Factor Graph Optimization
Figure 3 for Robust Legged Robot State Estimation Using Factor Graph Optimization
Figure 4 for Robust Legged Robot State Estimation Using Factor Graph Optimization
Viaarxiv icon