Alert button
Picture for Mihir Dharmadhikari

Mihir Dharmadhikari

Alert button

Autonomous Exploration and General Visual Inspection of Ship Ballast Water Tanks using Aerial Robots

Add code
Bookmark button
Alert button
Nov 07, 2023
Mihir Dharmadhikari, Paolo De Petris, Mihir Kulkarni, Nikhil Khedekar, Huan Nguyen, Arnt Erik Stene, Eivind Sjøvold, Kristian Solheim, Bente Gussiaas, Kostas Alexis

Viaarxiv icon

An Online Self-calibrating Refractive Camera Model with Application to Underwater Odometry

Add code
Bookmark button
Alert button
Oct 25, 2023
Mohit Singh, Mihir Dharmadhikari, Kostas Alexis

Figure 1 for An Online Self-calibrating Refractive Camera Model with Application to Underwater Odometry
Figure 2 for An Online Self-calibrating Refractive Camera Model with Application to Underwater Odometry
Figure 3 for An Online Self-calibrating Refractive Camera Model with Application to Underwater Odometry
Figure 4 for An Online Self-calibrating Refractive Camera Model with Application to Underwater Odometry
Viaarxiv icon

Semantics-aware Exploration and Inspection Path Planning

Add code
Bookmark button
Alert button
Mar 13, 2023
Mihir Dharmadhikari, Kostas Alexis

Figure 1 for Semantics-aware Exploration and Inspection Path Planning
Figure 2 for Semantics-aware Exploration and Inspection Path Planning
Figure 3 for Semantics-aware Exploration and Inspection Path Planning
Figure 4 for Semantics-aware Exploration and Inspection Path Planning
Viaarxiv icon

Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview and Lessons Learned

Add code
Bookmark button
Alert button
Jul 11, 2022
Marco Tranzatto, Mihir Dharmadhikari, Lukas Bernreiter, Marco Camurri, Shehryar Khattak, Frank Mascarich, Patrick Pfreundschuh, David Wisth, Samuel Zimmermann, Mihir Kulkarni, Victor Reijgwart, Benoit Casseau, Timon Homberger, Paolo De Petris, Lionel Ott, Wayne Tubby, Gabriel Waibel, Huan Nguyen, Cesar Cadena, Russell Buchanan, Lorenz Wellhausen, Nikhil Khedekar, Olov Andersson, Lintong Zhang, Takahiro Miki, Tung Dang, Matias Mattamala, Markus Montenegro, Konrad Meyer, Xiangyu Wu, Adrien Briod, Mark Mueller, Maurice Fallon, Roland Siegwart, Marco Hutter, Kostas Alexis

Figure 1 for Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview and Lessons Learned
Figure 2 for Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview and Lessons Learned
Figure 3 for Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview and Lessons Learned
Figure 4 for Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview and Lessons Learned
Viaarxiv icon

Marsupial Walking-and-Flying Robotic Deployment for Collaborative Exploration of Unknown Environments

Add code
Bookmark button
Alert button
May 11, 2022
Paolo De Petris, Shehryar Khattak, Mihir Dharmadhikari, Gabriel Waibel, Huan Nguyen, Markus Montenegro, Nikhil Khedekar, Kostas Alexis, Marco Hutter

Figure 1 for Marsupial Walking-and-Flying Robotic Deployment for Collaborative Exploration of Unknown Environments
Figure 2 for Marsupial Walking-and-Flying Robotic Deployment for Collaborative Exploration of Unknown Environments
Figure 3 for Marsupial Walking-and-Flying Robotic Deployment for Collaborative Exploration of Unknown Environments
Figure 4 for Marsupial Walking-and-Flying Robotic Deployment for Collaborative Exploration of Unknown Environments
Viaarxiv icon

RMF-Owl: A Collision-Tolerant Flying Robot for Autonomous Subterranean Exploration

Add code
Bookmark button
Alert button
Feb 22, 2022
Paolo De Petris, Huan Nguyen, Mihir Dharmadhikari, Mihir Kulkarni, Nikhil Khedekar, Frank Mascarich, Kostas Alexis

Figure 1 for RMF-Owl: A Collision-Tolerant Flying Robot for Autonomous Subterranean Exploration
Figure 2 for RMF-Owl: A Collision-Tolerant Flying Robot for Autonomous Subterranean Exploration
Figure 3 for RMF-Owl: A Collision-Tolerant Flying Robot for Autonomous Subterranean Exploration
Figure 4 for RMF-Owl: A Collision-Tolerant Flying Robot for Autonomous Subterranean Exploration
Viaarxiv icon

CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge

Add code
Bookmark button
Alert button
Jan 18, 2022
Marco Tranzatto, Frank Mascarich, Lukas Bernreiter, Carolina Godinho, Marco Camurri, Shehryar Khattak, Tung Dang, Victor Reijgwart, Johannes Loeje, David Wisth, Samuel Zimmermann, Huan Nguyen, Marius Fehr, Lukas Solanka, Russell Buchanan, Marko Bjelonic, Nikhil Khedekar, Mathieu Valceschini, Fabian Jenelten, Mihir Dharmadhikari, Timon Homberger, Paolo De Petris, Lorenz Wellhausen, Mihir Kulkarni, Takahiro Miki, Satchel Hirsch, Markus Montenegro, Christos Papachristos, Fabian Tresoldi, Jan Carius, Giorgio Valsecchi, Joonho Lee, Konrad Meyer, Xiangyu Wu, Juan Nieto, Andy Smith, Marco Hutter, Roland Siegwart, Mark Mueller, Maurice Fallon, Kostas Alexis

Figure 1 for CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge
Figure 2 for CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge
Figure 3 for CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge
Figure 4 for CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge
Viaarxiv icon

Autonomous Teamed Exploration of Subterranean Environments using Legged and Aerial Robots

Add code
Bookmark button
Alert button
Nov 11, 2021
Mihir Kulkarni, Mihir Dharmadhikari, Marco Tranzatto, Samuel Zimmermann, Victor Reijgwart, Paolo De Petris, Huan Nguyen, Nikhil Khedekar, Christos Papachristos, Lionel Ott, Roland Siegwart, Marco Hutter, Kostas Alexis

Figure 1 for Autonomous Teamed Exploration of Subterranean Environments using Legged and Aerial Robots
Figure 2 for Autonomous Teamed Exploration of Subterranean Environments using Legged and Aerial Robots
Figure 3 for Autonomous Teamed Exploration of Subterranean Environments using Legged and Aerial Robots
Figure 4 for Autonomous Teamed Exploration of Subterranean Environments using Legged and Aerial Robots
Viaarxiv icon

Appendix for the Motion Primitives-based Path Planning for Fast and Agile Exploration Method

Add code
Bookmark button
Alert button
Dec 06, 2020
Mihir Dharmadhikari, Tung Dang, Kostas Alexis

Figure 1 for Appendix for the Motion Primitives-based Path Planning for Fast and Agile Exploration Method
Figure 2 for Appendix for the Motion Primitives-based Path Planning for Fast and Agile Exploration Method
Figure 3 for Appendix for the Motion Primitives-based Path Planning for Fast and Agile Exploration Method
Figure 4 for Appendix for the Motion Primitives-based Path Planning for Fast and Agile Exploration Method
Viaarxiv icon