Abstract:Inspired by Large Language Models (LLMs), Time Series Forecasting (TSF), a long-standing task in time series analysis, is undergoing a transition towards Large Time Series Models (LTSMs), aiming to train universal transformer-based models for TSF. However, training LTSMs on heterogeneous time series data poses unique challenges, including diverse frequencies, dimensions, and patterns across datasets. Recent endeavors have studied and evaluated various design choices aimed at enhancing LTSM training and generalization capabilities, spanning pre-processing techniques, model configurations, and dataset configurations. In this work, we comprehensively analyze these design choices and aim to identify the best practices for training LTSM. Moreover, we propose \emph{time series prompt}, a novel statistical prompting strategy tailored to time series data. Furthermore, based on the observations in our analysis, we introduce \texttt{LTSM-bundle}, which bundles the best design choices we have identified. Empirical results demonstrate that \texttt{LTSM-bundle} achieves superior zero-shot and few-shot performances compared to state-of-the-art LSTMs and traditional TSF methods on benchmark datasets.
Abstract:This work studies self-supervised graph learning for text-attributed graphs (TAGs) where nodes are represented by textual attributes. Unlike traditional graph contrastive methods that perturb the numerical feature space and alter the graph's topological structure, we aim to improve view generation through language supervision. This is driven by the prevalence of textual attributes in real applications, which complement graph structures with rich semantic information. However, this presents challenges because of two major reasons. First, text attributes often vary in length and quality, making it difficulty to perturb raw text descriptions without altering their original semantic meanings. Second, although text attributes complement graph structures, they are not inherently well-aligned. To bridge the gap, we introduce GAugLLM, a novel framework for augmenting TAGs. It leverages advanced large language models like Mistral to enhance self-supervised graph learning. Specifically, we introduce a mixture-of-prompt-expert technique to generate augmented node features. This approach adaptively maps multiple prompt experts, each of which modifies raw text attributes using prompt engineering, into numerical feature space. Additionally, we devise a collaborative edge modifier to leverage structural and textual commonalities, enhancing edge augmentation by examining or building connections between nodes. Empirical results across five benchmark datasets spanning various domains underscore our framework's ability to enhance the performance of leading contrastive methods as a plug-in tool. Notably, we observe that the augmented features and graph structure can also enhance the performance of standard generative methods, as well as popular graph neural networks. The open-sourced implementation of our GAugLLM is available at Github.
Abstract:Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.
Abstract:Time series self-supervised learning (SSL) aims to exploit unlabeled data for pre-training to mitigate the reliance on labels. Despite the great success in recent years, there is limited discussion on the potential noise in the time series, which can severely impair the performance of existing SSL methods. To mitigate the noise, the de facto strategy is to apply conventional denoising methods before model training. However, this pre-processing approach may not fully eliminate the effect of noise in SSL for two reasons: (i) the diverse types of noise in time series make it difficult to automatically determine suitable denoising methods; (ii) noise can be amplified after mapping raw data into latent space. In this paper, we propose denoising-aware contrastive learning (DECL), which uses contrastive learning objectives to mitigate the noise in the representation and automatically selects suitable denoising methods for every sample. Extensive experiments on various datasets verify the effectiveness of our method. The code is open-sourced.
Abstract:Knowledge-based question answering (KBQA) is widely used in many scenarios that necessitate domain knowledge. Large language models (LLMs) bring opportunities to KBQA, while their costs are significantly higher and absence of domain-specific knowledge during pre-training. We are motivated to combine LLMs and prior small models on knowledge graphs (KGMs) for both inferential accuracy and cost saving. However, it remains challenging since accuracy and cost are not readily combined in the optimization as two distinct metrics. It is also laborious for model selection since different models excel in diverse knowledge. To this end, we propose Coke, a novel cost-efficient strategy for KBQA with LLMs, modeled as a tailored multi-armed bandit problem to minimize calls to LLMs within limited budgets. We first formulate the accuracy expectation with a cluster-level Thompson Sampling for either KGMs or LLMs. A context-aware policy is optimized to further distinguish the expert model subject to the question semantics. The overall decision is bounded by the cost regret according to historical expenditure on failures. Extensive experiments showcase the superior performance of Coke, which moves the Pareto frontier with up to 20.89% saving of GPT-4 fees while achieving a 2.74% higher accuracy on the benchmark datasets.
Abstract:This work studies ensemble learning for graph neural networks (GNNs) under the popular semi-supervised setting. Ensemble learning has shown superiority in improving the accuracy and robustness of traditional machine learning by combining the outputs of multiple weak learners. However, adopting a similar idea to integrate different GNN models is challenging because of two reasons. First, GNN is notorious for its poor inference ability, so naively assembling multiple GNN models would deteriorate the inference efficiency. Second, when GNN models are trained with few labeled nodes, their performance are limited. In this case, the vanilla ensemble approach, e.g., majority vote, may be sub-optimal since most base models, i.e., GNNs, may make the wrong predictions. To this end, in this paper, we propose an efficient ensemble learner--E2GNN to assemble multiple GNNs in a learnable way by leveraging both labeled and unlabeled nodes. Specifically, we first pre-train different GNN models on a given data scenario according to the labeled nodes. Next, instead of directly combing their outputs for label inference, we train a simple multi-layer perceptron--MLP model to mimic their predictions on both labeled and unlabeled nodes. Then the unified MLP model is deployed to infer labels for unlabeled or new nodes. Since the predictions of unlabeled nodes from different GNN models may be incorrect, we develop a reinforced discriminator to effectively filter out those wrongly predicted nodes to boost the performance of MLP. By doing this, we suggest a principled approach to tackle the inference issues of GNN ensembles and maintain the merit of ensemble learning: improved performance. Comprehensive experiments over both transductive and inductive settings, across different GNN backbones and 8 benchmark datasets, demonstrate the superiority of E2GNN.
Abstract:Knowledge-based visual question answering (KVQA) has been extensively studied to answer visual questions with external knowledge, e.g., knowledge graphs (KGs). While several attempts have been proposed to leverage large language models (LLMs) as an implicit knowledge source, it remains challenging since LLMs may generate hallucinations. Moreover, multiple knowledge sources, e.g., images, KGs and LLMs, cannot be readily aligned for complex scenarios. To tackle these, we present a novel modality-aware integration with LLMs for KVQA (MAIL). It carefully leverages multimodal knowledge for both image understanding and knowledge reasoning. Specifically, (i) we propose a two-stage prompting strategy with LLMs to densely embody the image into a scene graph with detailed visual features; (ii) We construct a coupled concept graph by linking the mentioned entities with external facts. (iii) A tailored pseudo-siamese graph medium fusion is designed for sufficient multimodal fusion. We utilize the shared mentioned entities in two graphs as mediums to bridge a tight inter-modal exchange, while maximally preserving insightful intra-modal learning by constraining the fusion within mediums. Extensive experiments on two benchmark datasets show the superiority of MAIL with 24x less resources.
Abstract:The surge in interest and application of large language models (LLMs) has sparked a drive to fine-tune these models to suit specific applications, such as finance and medical science. However, concerns regarding data privacy have emerged, especially when multiple stakeholders aim to collaboratively enhance LLMs using sensitive data. In this scenario, federated learning becomes a natural choice, allowing decentralized fine-tuning without exposing raw data to central servers. Motivated by this, we investigate how data privacy can be ensured in LLM fine-tuning through practical federated learning approaches, enabling secure contributions from multiple parties to enhance LLMs. Yet, challenges arise: 1) despite avoiding raw data exposure, there is a risk of inferring sensitive information from model outputs, and 2) federated learning for LLMs incurs notable communication overhead. To address these challenges, this article introduces DP-LoRA, a novel federated learning algorithm tailored for LLMs. DP-LoRA preserves data privacy by employing a Gaussian mechanism that adds noise in weight updates, maintaining individual data privacy while facilitating collaborative model training. Moreover, DP-LoRA optimizes communication efficiency via low-rank adaptation, minimizing the transmission of updated weights during distributed training. The experimental results across medical, financial, and general datasets using various LLMs demonstrate that DP-LoRA effectively ensures strict privacy constraints while minimizing communication overhead.
Abstract:Generative Large Language Models (LLMs), such as ChatGPT, offer interactive APIs that can answer common questions at a human-expert level. However, these models often give inaccurate or incorrect responses when faced with questions requiring domain-specific or professional-specific knowledge not covered in their training corpus. Furthermore, many state-of-the-art LLMs are not open-source, making it challenging to inject knowledge with model APIs only. In this work, we introduce KnowGPT, a black-box knowledge injection framework for LLMs in question answering. KnowGPT leverages deep reinforcement learning (RL) to extract relevant knowledge from Knowledge Graphs (KGs) and use Multi-Armed Bandit (MAB) to construct the most suitable prompt for each question. Our extensive experiments on three benchmark datasets showcase that KnowGPT significantly enhances the existing methods. Notably, KnowGPT achieves an average improvement of 23.7% over ChatGPT and an average improvement of 2.9% over GPT-4. Additionally, KnowGPT attains a 91.6% accuracy on the OpenbookQA official leaderboard, which is comparable to human-level performance.
Abstract:Exploration poses a fundamental challenge in Reinforcement Learning (RL) with sparse rewards, limiting an agent's ability to learn optimal decision-making due to a lack of informative feedback signals. Self-Imitation Learning (self-IL) has emerged as a promising approach for exploration, leveraging a replay buffer to store and reproduce successful behaviors. However, traditional self-IL methods, which rely on high-return transitions and assume singleton environments, face challenges in generalization, especially in procedurally-generated (PCG) environments. Therefore, new self-IL methods have been proposed to rank which experiences to persist, but they replay transitions uniformly regardless of their significance, and do not address the diversity of the stored demonstrations. In this work, we propose tailored self-IL sampling strategies by prioritizing transitions in different ways and extending prioritization techniques to PCG environments. We also address diversity loss through modifications to counteract the impact of generalization requirements and bias introduced by prioritization techniques. Our experimental analysis, conducted over three PCG sparse reward environments, including MiniGrid and ProcGen, highlights the benefits of our proposed modifications, achieving a new state-of-the-art performance in the MiniGrid-MultiRoom-N12-S10 environment.