Abstract:Federated learning (FL) has emerged as a promising approach for collaborative medical image analysis, enabling multiple institutions to build robust predictive models while preserving sensitive patient data. In the context of Whole Slide Image (WSI) classification, FL faces significant challenges, including heterogeneous computational resources across participating medical institutes and privacy concerns. To address these challenges, we propose FedWSIDD, a novel FL paradigm that leverages dataset distillation (DD) to learn and transmit synthetic slides. On the server side, FedWSIDD aggregates synthetic slides from participating centres and distributes them across all centres. On the client side, we introduce a novel DD algorithm tailored to histopathology datasets which incorporates stain normalisation into the distillation process to generate a compact set of highly informative synthetic slides. These synthetic slides, rather than model parameters, are transmitted to the server. After communication, the received synthetic slides are combined with original slides for local tasks. Extensive experiments on multiple WSI classification tasks, including CAMELYON16 and CAMELYON17, demonstrate that FedWSIDD offers flexibility for heterogeneous local models, enhances local WSI classification performance, and preserves patient privacy. This makes it a highly effective solution for complex WSI classification tasks. The code is available at FedWSIDD.
Abstract:This study provides a comparative analysis of deep learning models including UNet, Res-UNet, Attention Res-UNet, and nnUNet, and evaluates their performance in brain tumour, polyp, and multi-class heart segmentation tasks. The analysis focuses on precision, accuracy, recall, Dice Similarity Coefficient (DSC), and Intersection over Union (IoU) to assess their clinical applicability. In brain tumour segmentation, Res-UNet and nnUNet significantly outperformed UNet, with Res-UNet leading in DSC and IoU scores, indicating superior accuracy in tumour delineation. Meanwhile, nnUNet excelled in recall and accuracy, which are crucial for reliable tumour detection in clinical diagnosis and planning. In polyp detection, nnUNet was the most effective, achieving the highest metrics across all categories and proving itself as a reliable diagnostic tool in endoscopy. In the complex task of heart segmentation, Res-UNet and Attention Res-UNet were outstanding in delineating the left ventricle, with Res-UNet also leading in right ventricle segmentation. nnUNet was unmatched in myocardium segmentation, achieving top scores in precision, recall, DSC, and IoU. The conclusion notes that although Res-UNet occasionally outperforms nnUNet in specific metrics, the differences are quite small. Moreover, nnUNet consistently shows superior overall performance across the experiments. Particularly noted for its high recall and accuracy, which are crucial in clinical settings to minimize misdiagnosis and ensure timely treatment, nnUNet's robust performance in crucial metrics across all tested categories establishes it as the most effective model for these varied and complex segmentation tasks.