Alert button
Picture for Coen de Vente

Coen de Vente

Alert button

AIROGS: Artificial Intelligence for RObust Glaucoma Screening Challenge

Add code
Bookmark button
Alert button
Feb 10, 2023
Coen de Vente, Koenraad A. Vermeer, Nicolas Jaccard, He Wang, Hongyi Sun, Firas Khader, Daniel Truhn, Temirgali Aimyshev, Yerkebulan Zhanibekuly, Tien-Dung Le, Adrian Galdran, Miguel Ángel González Ballester, Gustavo Carneiro, Devika R G, Hrishikesh P S, Densen Puthussery, Hong Liu, Zekang Yang, Satoshi Kondo, Satoshi Kasai, Edward Wang, Ashritha Durvasula, Jónathan Heras, Miguel Ángel Zapata, Teresa Araújo, Guilherme Aresta, Hrvoje Bogunović, Mustafa Arikan, Yeong Chan Lee, Hyun Bin Cho, Yoon Ho Choi, Abdul Qayyum, Imran Razzak, Bram van Ginneken, Hans G. Lemij, Clara I. Sánchez

Figure 1 for AIROGS: Artificial Intelligence for RObust Glaucoma Screening Challenge
Figure 2 for AIROGS: Artificial Intelligence for RObust Glaucoma Screening Challenge
Figure 3 for AIROGS: Artificial Intelligence for RObust Glaucoma Screening Challenge
Figure 4 for AIROGS: Artificial Intelligence for RObust Glaucoma Screening Challenge
Viaarxiv icon

Uncertainty-Aware Multiple-Instance Learning for Reliable Classification: Application to Optical Coherence Tomography

Add code
Bookmark button
Alert button
Feb 06, 2023
Coen de Vente, Bram van Ginneken, Carel B. Hoyng, Caroline C. W. Klaver, Clara I. Sánchez

Figure 1 for Uncertainty-Aware Multiple-Instance Learning for Reliable Classification: Application to Optical Coherence Tomography
Figure 2 for Uncertainty-Aware Multiple-Instance Learning for Reliable Classification: Application to Optical Coherence Tomography
Figure 3 for Uncertainty-Aware Multiple-Instance Learning for Reliable Classification: Application to Optical Coherence Tomography
Figure 4 for Uncertainty-Aware Multiple-Instance Learning for Reliable Classification: Application to Optical Coherence Tomography
Viaarxiv icon

A deep learning framework for the detection and quantification of drusen and reticular pseudodrusen on optical coherence tomography

Add code
Bookmark button
Alert button
Apr 05, 2022
Roy Schwartz, Hagar Khalid, Sandra Liakopoulos, Yanling Ouyang, Coen de Vente, Cristina González-Gonzalo, Aaron Y. Lee, Robyn Guymer, Emily Y. Chew, Catherine Egan, Zhichao Wu, Himeesh Kumar, Joseph Farrington, Clara I. Sánchez, Adnan Tufail

Figure 1 for A deep learning framework for the detection and quantification of drusen and reticular pseudodrusen on optical coherence tomography
Figure 2 for A deep learning framework for the detection and quantification of drusen and reticular pseudodrusen on optical coherence tomography
Figure 3 for A deep learning framework for the detection and quantification of drusen and reticular pseudodrusen on optical coherence tomography
Figure 4 for A deep learning framework for the detection and quantification of drusen and reticular pseudodrusen on optical coherence tomography
Viaarxiv icon

Improving Automated COVID-19 Grading with Convolutional Neural Networks in Computed Tomography Scans: An Ablation Study

Add code
Bookmark button
Alert button
Sep 21, 2020
Coen de Vente, Luuk H. Boulogne, Kiran Vaidhya Venkadesh, Cheryl Sital, Nikolas Lessmann, Colin Jacobs, Clara I. Sánchez, Bram van Ginneken

Figure 1 for Improving Automated COVID-19 Grading with Convolutional Neural Networks in Computed Tomography Scans: An Ablation Study
Figure 2 for Improving Automated COVID-19 Grading with Convolutional Neural Networks in Computed Tomography Scans: An Ablation Study
Figure 3 for Improving Automated COVID-19 Grading with Convolutional Neural Networks in Computed Tomography Scans: An Ablation Study
Figure 4 for Improving Automated COVID-19 Grading with Convolutional Neural Networks in Computed Tomography Scans: An Ablation Study
Viaarxiv icon

A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging

Add code
Bookmark button
Alert button
May 07, 2020
Zhaohan Xiong, Qing Xia, Zhiqiang Hu, Ning Huang, Cheng Bian, Yefeng Zheng, Sulaiman Vesal, Nishant Ravikumar, Andreas Maier, Xin Yang, Pheng-Ann Heng, Dong Ni, Caizi Li, Qianqian Tong, Weixin Si, Elodie Puybareau, Younes Khoudli, Thierry Geraud, Chen Chen, Wenjia Bai, Daniel Rueckert, Lingchao Xu, Xiahai Zhuang, Xinzhe Luo, Shuman Jia, Maxime Sermesant, Yashu Liu, Kuanquan Wang, Davide Borra, Alessandro Masci, Cristiana Corsi, Coen de Vente, Mitko Veta, Rashed Karim, Chandrakanth Jayachandran Preetha, Sandy Engelhardt, Menyun Qiao, Yuanyuan Wang, Qian Tao, Marta Nunez-Garcia, Oscar Camara, Nicolo Savioli, Pablo Lamata, Jichao Zhao

Figure 1 for A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging
Figure 2 for A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging
Figure 3 for A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging
Figure 4 for A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging
Viaarxiv icon