Abstract:General-purpose robotic systems operating in open-world environments must achieve both broad generalization and high-precision action execution, a combination that remains challenging for existing Vision-Language-Action (VLA) models. While large Vision-Language Models (VLMs) improve semantic generalization, insufficient embodied reasoning leads to brittle behavior, and conversely, strong reasoning alone is inadequate without precise control. To provide a decoupled and quantitative assessment of this bottleneck, we introduce Embodied Reasoning Intelligence Quotient (ERIQ), a large-scale embodied reasoning benchmark in robotic manipulation, comprising 6K+ question-answer pairs across four reasoning dimensions. By decoupling reasoning from execution, ERIQ enables systematic evaluation and reveals a strong positive correlation between embodied reasoning capability and end-to-end VLA generalization. To bridge the gap from reasoning to precise execution, we propose FACT, a flow-matching-based action tokenizer that converts continuous control into discrete sequences while preserving high-fidelity trajectory reconstruction. The resulting GenieReasoner jointly optimizes reasoning and action in a unified space, outperforming both continuous-action and prior discrete-action baselines in real-world tasks. Together, ERIQ and FACT provide a principled framework for diagnosing and overcoming the reasoning-precision trade-off, advancing robust, general-purpose robotic manipulation.




Abstract:We present a method for human pose tracking that learns explicitly about the dynamic effects of human motion on joint appearance. In contrast to previous techniques which employ generic tools such as dense optical flow or spatio-temporal smoothness constraints to pass pose inference cues between frames, our system instead learns to predict joint displacements from the previous frame to the current frame based on the possibly changing appearance of relevant pixels surrounding the corresponding joints in the previous frame. This explicit learning of pose deformations is formulated by incorporating concepts from human pose estimation into an optical flow-like framework. With this approach, state-of-the-art performance is achieved on standard benchmarks for various pose tracking tasks including 3D body pose tracking in RGB video, 3D hand pose tracking in depth sequences, and 3D hand gesture tracking in RGB video.



Abstract:For the ECCV 2018 PoseTrack Challenge, we present a 3D human pose estimation system based mainly on the integral human pose regression method. We show a comprehensive ablation study to examine the key performance factors of the proposed system. Our system obtains 47mm MPJPE on the CHALL_H80K test dataset, placing second in the ECCV2018 3D human pose estimation challenge. Code will be released to facilitate future work.