The objective of generative model inversion is to identify a size-$n$ latent vector that produces a generative model output that closely matches a given target. This operation is a core computational primitive in numerous modern applications involving computer vision and NLP. However, the problem is known to be computationally challenging and NP-hard in the worst case. This paper aims to provide a fine-grained view of the landscape of computational hardness for this problem. We establish several new hardness lower bounds for both exact and approximate model inversion. In exact inversion, the goal is to determine whether a target is contained within the range of a given generative model. Under the strong exponential time hypothesis (SETH), we demonstrate that the computational complexity of exact inversion is lower bounded by $\Omega(2^n)$ via a reduction from $k$-SAT; this is a strengthening of known results. For the more practically relevant problem of approximate inversion, the goal is to determine whether a point in the model range is close to a given target with respect to the $\ell_p$-norm. When $p$ is a positive odd integer, under SETH, we provide an $\Omega(2^n)$ complexity lower bound via a reduction from the closest vectors problem (CVP). Finally, when $p$ is even, under the exponential time hypothesis (ETH), we provide a lower bound of $2^{\Omega (n)}$ via a reduction from Half-Clique and Vertex-Cover.
3D printing or additive manufacturing is a revolutionary technology that enables the creation of physical objects from digital models. However, the quality and accuracy of 3D printing depend on the correctness and efficiency of the G-code, a low-level numerical control programming language that instructs 3D printers how to move and extrude material. Debugging G-code is a challenging task that requires a syntactic and semantic understanding of the G-code format and the geometry of the part to be printed. In this paper, we present the first extensive evaluation of six state-of-the-art foundational large language models (LLMs) for comprehending and debugging G-code files for 3D printing. We design effective prompts to enable pre-trained LLMs to understand and manipulate G-code and test their performance on various aspects of G-code debugging and manipulation, including detection and correction of common errors and the ability to perform geometric transformations. We analyze their strengths and weaknesses for understanding complete G-code files. We also discuss the implications and limitations of using LLMs for G-code comprehension.
Real world uses of deep learning require predictable model behavior under distribution shifts. Models such as CLIP show emergent natural distributional robustness comparable to humans, but may require hundreds of millions of training samples. Can we train robust learners in a domain where data is limited? To rigorously address this question, we introduce JANuS (Joint Annotations and Names Set), a collection of four new training datasets with images, labels, and corresponding captions, and perform a series of carefully controlled investigations of factors contributing to robustness in image classification, then compare those results to findings derived from a large-scale meta-analysis. Using this approach, we show that standard ResNet-50 trained with the cross-entropy loss on 2.4 million image samples can attain comparable robustness to a CLIP ResNet-50 trained on 400 million samples. To our knowledge, this is the first result showing (near) state-of-the-art distributional robustness on limited data budgets. Our dataset is available at \url{https://huggingface.co/datasets/penfever/JANuS_dataset}, and the code used to reproduce our experiments can be found at \url{https://github.com/penfever/vlhub/}.
Text-to-image generative models can produce photo-realistic images for an extremely broad range of concepts, and their usage has proliferated widely among the general public. On the flip side, these models have numerous drawbacks, including their potential to generate images featuring sexually explicit content, mirror artistic styles without permission, or even hallucinate (or deepfake) the likenesses of celebrities. Consequently, various methods have been proposed in order to "erase" sensitive concepts from text-to-image models. In this work, we examine five recently proposed concept erasure methods, and show that targeted concepts are not fully excised from any of these methods. Specifically, we leverage the existence of special learned word embeddings that can retrieve "erased" concepts from the sanitized models with no alterations to their weights. Our results highlight the brittleness of post hoc concept erasure methods, and call into question their use in the algorithmic toolkit for AI safety.
The performance of automated face recognition systems is inevitably impacted by the facial aging process. However, high quality datasets of individuals collected over several years are typically small in scale. In this work, we propose, train, and validate the use of latent text-to-image diffusion models for synthetically aging and de-aging face images. Our models succeed with few-shot training, and have the added benefit of being controllable via intuitive textual prompting. We observe high degrees of visual realism in the generated images while maintaining biometric fidelity measured by commonly used metrics. We evaluate our method on two benchmark datasets (CelebA and AgeDB) and observe significant reduction (~44%) in the False Non-Match Rate compared to existing state-of the-art baselines.
Recognizing the activities, causing distraction, in real-world driving scenarios is critical for ensuring the safety and reliability of both drivers and pedestrians on the roadways. Conventional computer vision techniques are typically data-intensive and require a large volume of annotated training data to detect and classify various distracted driving behaviors, thereby limiting their efficiency and scalability. We aim to develop a generalized framework that showcases robust performance with access to limited or no annotated training data. Recently, vision-language models have offered large-scale visual-textual pretraining that can be adapted to task-specific learning like distracted driving activity recognition. Vision-language pretraining models, such as CLIP, have shown significant promise in learning natural language-guided visual representations. This paper proposes a CLIP-based driver activity recognition approach that identifies driver distraction from naturalistic driving images and videos. CLIP's vision embedding offers zero-shot transfer and task-based finetuning, which can classify distracted activities from driving video data. Our results show that this framework offers state-of-the-art performance on zero-shot transfer and video-based CLIP for predicting the driver's state on two public datasets. We propose both frame-based and video-based frameworks developed on top of the CLIP's visual representation for distracted driving detection and classification task and report the results.
Current state-of-the-art methods for text-to-shape generation either require supervised training using a labeled dataset of pre-defined 3D shapes, or perform expensive inference-time optimization of implicit neural representations. In this work, we present ZeroForge, an approach for zero-shot text-to-shape generation that avoids both pitfalls. To achieve open-vocabulary shape generation, we require careful architectural adaptation of existing feed-forward approaches, as well as a combination of data-free CLIP-loss and contrastive losses to avoid mode collapse. Using these techniques, we are able to considerably expand the generative ability of existing feed-forward text-to-shape models such as CLIP-Forge. We support our method via extensive qualitative and quantitative evaluations
Recent advances in training vision-language models have demonstrated unprecedented robustness and transfer learning effectiveness; however, standard computer vision datasets are image-only, and therefore not well adapted to such training methods. Our paper introduces a simple methodology for adapting any fine-grained image classification dataset for distributed vision-language pretraining. We implement this methodology on the challenging iNaturalist-2021 dataset, comprised of approximately 2.7 million images of macro-organisms across 10,000 classes, and achieve a new state-of-the art model in terms of zero-shot classification accuracy. Somewhat surprisingly, our model (trained using a new method called locked-image text tuning) uses a pre-trained, frozen vision representation, proving that language alignment alone can attain strong transfer learning performance, even on fractious, long-tailed datasets. Our approach opens the door for utilizing high quality vision-language pretrained models in agriculturally relevant applications involving species detection.
We study the implicit regularization of gradient descent towards structured sparsity via a novel neural reparameterization, which we call a diagonally grouped linear neural network. We show the following intriguing property of our reparameterization: gradient descent over the squared regression loss, without any explicit regularization, biases towards solutions with a group sparsity structure. In contrast to many existing works in understanding implicit regularization, we prove that our training trajectory cannot be simulated by mirror descent. We analyze the gradient dynamics of the corresponding regression problem in the general noise setting and obtain minimax-optimal error rates. Compared to existing bounds for implicit sparse regularization using diagonal linear networks, our analysis with the new reparameterization shows improved sample complexity. In the degenerate case of size-one groups, our approach gives rise to a new algorithm for sparse linear regression. Finally, we demonstrate the efficacy of our approach with several numerical experiments.